

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

MAJIC: A JAVA APPLICATION FOR CONTROLLING
MULTIPLE, HETEROGENEOUS ROBOTIC AGENTS

by

Gregory P. Ball

September 2007

 Thesis Advisor: Craig Martell
 Thesis Co-advisor: Kevin Squire

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2007

3. REPORT TYPE AND DATES
COVERED

Master’s Thesis
4. TITLE AND SUBTITLE MAJIC: A Java Application for Controlling Multiple,
 Heterogeneous Robotic Agents
6. AUTHOR(S) Gregory P. Ball

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
Current capability to command and control a team of heterogeneous robotic agents is limited by proprietary

command formats and operating systems. A specific challenge in this context is the specification, the programming,
and the testing of software for such a wide variety of mobile robot teams. This work explores the applicability of an
application program interface (API), called the Multi-Agent Java Interface Controller (MAJIC), that supports
command, control, and coordination of heterogeneous robot teams. MAJIC encapsulates scripted commands, pre-
programmed behaviors, and simultaneous, multi-agent control.

By exploiting the powerful techniques of polymorphism and object-oriented programming, a generic
MajicBot class will provide the necessary level of abstraction between the user and the proprietary architectures.
Utilizing the technique of inheritance, future NPS students will be able to extend the generic class in order to easily
add new robot-specific libraries. Students will also be able to utilize the existing libraries to program and test their
own robot behaviors in real-world environments utilizing the MAJIC package.

A final display of the versatility and power of programming behaviors within the MAJIC software
architecture is demonstrated by a series of example programs conducted on a team of robots consisting of a Sony
Aibo, a Mobile Robots Pioneer, and a K-Team Hemisson.

15. NUMBER OF
PAGES

157

14. SUBJECT TERMS Robotics, control architecture, heterogeneous control, abstraction, object-
oriented programming, Java, UML

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

MAJIC: A JAVA APPLICATION FOR CONTROLLING MULTIPLE,
HETEROGENEOUS ROBOTIC AGENTS

Gregory P. Ball

Lieutenant, United States Navy
B.S., Ferris State University, 1991

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2007

Author: Gregory P. Ball

Approved by: Craig Martell
Thesis Advisor

Kevin Squire
Thesis Co-advisor

Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Current capability to command and control a team of heterogeneous robotic

agents is limited by proprietary command formats and operating systems. A specific

challenge in this context is the specification, the programming, and the testing of

software for such a wide variety of mobile robot teams. This work explores the

applicability of an application program interface (API), called Multi-Agent Java Interface

Controller (MAJIC), that supports command, control, and coordination of heterogeneous

robot teams. MAJIC encapsulates scripted commands, pre-programmed behaviors, and

simultaneous, multi-agent control.

By exploiting the powerful techniques of polymorphism and object-oriented

programming, a generic MajicBot class will provide the necessary level of abstraction

between the user and the proprietary architectures. Utilizing the technique of inheritance,

future NPS students will be able to extend the generic class to easily add new robot-

specific libraries. Students will also be able to utilize the existing libraries to program

and test their own robot behaviors in real-world environments utilizing the MAJIC

package.

A final display of the versatility and power of programming behaviors within the

MAJIC software architecture is demonstrated by a series of example programs conducted

on a team of robots consisting of a Sony Aibo, a Mobile Robots Pioneer, and a Narrow

Roads Hemisson.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OVERVIEW...1
B. MOTIVATION ..2
C. OBJECTIVES ..3
D. SCOPE ..4
E. THESIS ORGANIZATION..4

II. SOFTWARE VISION DOCUMENT...5
A. INTRODUCTION..5

1. Purpose of the Vision Document ..5
2. Application Overview ..5

B. USER DESCRIPTION ..5
1. User Demographics..5
2. User Profiles ...5
3. Users Environment ..6
4. Key User Needs ..6

a. Communication...6
b. Control...6
c. Coordination..7

5. Alternatives...7
C. APPLICATION OVERVIEW..7

1. Application Perspective ...7
2. Application Position Statement ..8
3. Application Capabilities Summary ..8
4. Assumptions and Dependencies..8

D. APPLICATION FEATURES ...9
1. Button Toolbar ...9
2. Robot Configurability..9
3. Scripted Language ...9
4. Command Line...9
5. Behavioral Programming..9
6. Informational Displays ..10
7. File I/O ..10

E. USE CASE DIAGRAMS...10
F. APPLICATION ALTERNATIVES...24

III. SYSTEM DESIGN...27
A. INTRODUCTION..27
B. SYSTEM ARCHITECTURE ...27

1. Overview ...27
a. Style of Architecture..27
b. Goals of Architecture ..27
c. Style of Architecture..29

 viii

d. Goals of Architecture ..29
2. Components ..30

a. Presentation/UI Components ...31
b. Application Logic Components ..31

3. Integration ..32
C. GRAPHICAL USER INTERFACE...33

1. Overview ...33
2. Content Model..34

D. BEHAVIORAL DESIGN..35
1. Domain Model ..35
2. Boundary Use Cases ..37
3. Sequence Diagrams..39
4. Operational Contracts ...47

E. OBJECT DESIGN ...50
1. Class Diagrams...50

a. Startup Class Diagram..52
b. Add Class Diagram ...53
c. Load Action Class Diagram..54
d. Parse Command Class Diagram...55

2. Class Descriptions ..56
a. The MajicFrame Class..56
b. The MajicParser Class..59
c. The MajicBot Class...61
d. The MajicAct Class ...64

3. Class Extensions ...66
a. The MajicHemisson Class ..66
b. The MajicAibo Class...70
c. The MajicPioneer Class..74

F. DESIGN ALTERNATIVES..78

IV. IMPLEMENTATION ...79
A. OVERVIEW...79
B. JAVA...79
C. AIBO ...81

1. R-Code SDK ...81
2. Open-R SDK...82
3. Universal Realtime Behavior Interface..83

D. ARIA ...84
E. INSTALLATION GUIDE...85

1. URBI Installation for Aibo..86
2. Javax.comm installation for Hemisson ..86
3. ARIA installation for the Pioneer...87

F. USER’S GUIDE ...87
1. MAJIC Main Screen..88

a. Button Panel..89
b. Robot Display Area ...89

 ix

c. Command Line..89
d. Message Area ..90

2. Adding a Robot to the Team...90
3. Passing Commands to the Robot ..92

a. Robot ID ..94
b. The MOVE Command ..94
c. The TURN Command ...94
d. The GET Command..94
e. The SET Command...95
f. Command Line Example ..96

4. Invoking the Help Screen ..96
5. Saving a MAJIC Session ...97
6. Saving a Parameter Log ..98
7. Loading Actions on the Robot ..98
8. Removing a Robot from the Team ...100
9. Quitting the MAJIC Application..102

G. PROGRAMMER’S GUIDE ...103
1. Stand-alone Programming ..103
2. Creating Robot Libraries ..106
3. Performing a Majic Act...111

a. The MajicAct Class ...111
b. The AiboSquare Class Extension...112
c. Creating a Majic Act with a Session File.............................114
d. Serializing a MajicAct Object ...115

V. RESULTS ...117
A. OVERVIEW...117
B. INDIVIDUAL ROBOT PROGRAMMING..117

1. MAJIC vs Proprietary Programming with Aibo..........................118
2. MAJIC vs Proprietary Programming with Pioneer124

C. PROGRAMMING HETEROGENEOUS ROBOT TEAMS...................129

VI. CONCLUSIONS AND RECOMMENDATIONS...135
A. RESEARCH CONCLUSIONS...135
B. RECOMMENDATIONS FOR FUTURE WORK....................................135

LIST OF REFERENCES..137

INITIAL DISTRIBUTION LIST ...139

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. U.S. Army soldiers arrive with a robot, left, to remove explosive devices
from a street in the center of Baghdad, Iraq, Sunday, May 9, 2004. (From:
AP Photo/Mohammed Uraibi) ...1

Figure 2. MOCU (from SPAWAR San Diego)...2
Figure 3. Use Case Model. ..11
Figure 4. MAJIC Architecture...28
Figure 5. UML Component Model..30
Figure 6. Prototype of Main GUI Display...33
Figure 7. Domain Model UML. ..36
Figure 8. UC-5 Application Startup Sequence Diagram...39
Figure 9. UC-6 Application Shutdown Sequence Diagram. ...40
Figure 10. UC-1 Add Bot Sequence Diagram...41
Figure 11. UC-2 Remove Bot Sequence Diagram. ...42
Figure 12. UC-3 Load Action Sequence Diagram. ...43
Figure 13. UC-4a Move Bot Sequence Diagram. ...44
Figure 14. UC-4b Turn Bot Sequence Diagram..45
Figure 15. UC-4c Set Bot Parameters Sequence Diagram..46
Figure 16. UC-4d Get Bot Parameters Sequence Diagram. ..47
Figure 17. Overall Class Diagram...51
Figure 18. Startup Class Diagram. ..52
Figure 19. Add Class Diagram. ...53
Figure 20. Load Action Class Diagram...54
Figure 21. Parse Command Class Diagram...55
Figure 22. MajicFrame Class Model. ..57
Figure 23. MajicParser Class Model. ..60
Figure 24. MajicBot Class Model. ..62
Figure 25. MajicAct Class Model. ..65
Figure 26. MajicHemisson Class Model. ..67
Figure 27. MajicAibo Class Model. ..72
Figure 28. MajicPioneer Class Model...76
Figure 29. MAJIC Main Screen. ...88
Figure 30. Robot Selection Screen. ...90
Figure 31. Connection Input Screen..91
Figure 32. Adding an AIBO. ...92
Figure 33. MAJIC Command Line Example. ...95
Figure 34. Aibo Help Screen...97
Figure 35. Robot Selection for Load Action. ..99
Figure 36. Load Action Selection Screen..100
Figure 37. Removing a Robot. ..101
Figure 38. Bot 1 is Dead..102
Figure 39. The WanderDog Program. ...105
Figure 40. The Generic MajicBot Template. ..108

 xii

Figure 41. The Abstract MajicBot Class ...110
Figure 42. The MajicAct Class..112
Figure 43. MajicAct AiboSquare Example ...113
Figure 44. Aibo Session Sample. ..115
Figure 45. Majic Act Maker. ...116
Figure 46. Aibo’s Layers of Abstraction...118
Figure 47. WanderDog with Line Numbers. ...120
Figure 48. URBI WanderDog. ..122
Figure 49. URBI WanderDog (cont.). ...123
Figure 50. Pioneer Architecture. ...125
Figure 51. Pioneer Program using ARIA. ...126
Figure 52. Pioneer Program using ARIA (cont.)...127
Figure 53. Pioneer Program using MAJIC..128
Figure 54. GreatRace Example. ..130
Figure 55. GreatRace Example (cont.). ...131
Figure 56. GreatRacePioneerServer Example...132
Figure 57. GreatRacePioneerServer (cont.). ...133
Figure 58. MajicRace Example. ..134

 xiii

LIST OF TABLES

Table 1. MAJIC Capabilities Summary...8
Table 2. Content Model. ..34
Table 3. MAJIC Script Commands..93

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to thank the staff and students at the Naval Postgraduate School for

their support and assistance. I consider myself fortunate to have met the gentlemen who

comprise the graduating class of September 2007, and to be able to count them among

my friends. Specifically I would like to thank:

Craig Martell for his guidance, wisdom, and his refusal to let me give up when I

was unsure if I would be able to develop my research into a viable thesis.

Kevin Squire for his technical expertise, insights, and ensuring I covered all the

bases when developing this document.

James Robinson for being a friend, a PT partner, and a constant source of

entertainment.

Pat Staub for the friendship, the physical training, and the after school band

project: Off By One.

Eric Sjoberg for being a sounding board and a friend, and for cleverly helping me

take my mind off school with grueling 20 mile hikes and half marathons.

My parents, Phil and Dana Ball, for the academic support over all the years, not to

mention the love and support with everything else in between.

And finally, most importantly, my wife, Marie, and my children. Without their

tireless understanding and support this thesis, and just about everything else I’ve

managed to accomplish over the years would not be possible – and not nearly as

enjoyable.

Thank you all.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. OVERVIEW

As teams of autonomous, mobile robots gain popularity in areas such as

automated factories, education, and military applications, so does the necessity for a

robust, scalable robot control architecture. The military has incorporated many robotic

systems into the battlefield. Missions range from autonomous robotic surveillance

systems to improvised explosive devices (IED) disposal robots (Figure 1).

Figure 1. U.S. Army soldiers arrive with a robot, left, to remove explosive devices from a
street in the center of Baghdad, Iraq, Sunday, May 9, 2004.

(From: AP Photo/Mohammed Uraibi)

The military’s multitude of mission scenarios requires a variety of robotic assets

able to conduct land, air, sea, and even undersea operations. Unmanned aerial vehicles

(UAVs), autonomous underwater vehicles (AUVs), and unmanned surface vehicles

(USVs) are fast becoming a regular part of the military landscape. These assets,

however, generally employ proprietary protocols requiring the creation of custom

command and control systems capable of controlling only a single type of asset, or a

limited subset of assets.

2

Military organizations, such as SPAWAR Systems Center San Diego, are

currently working to solve these command and control issues. Projects like the Multi-

Robot Operator Control Unit (MOCU) have begun to explore the development of systems

that provide unmanned vehicle and sensor operator control interfaces capable of

controlling and monitoring multiple sets of heterogeneous systems simultaneously

(Figure 2) [4].

Figure 2. MOCU (from SPAWAR San Diego).

B. MOTIVATION

In order for solutions to the obstacles that currently face autonomous military

applications to be realized on the battlefield, they must first be researched in the

3

classroom. With the formation of the Autonomous Coordination Systems Laboratory, the

Naval Postgraduate School has taken the first step toward providing those solutions.

As in the real world setting, researchers quickly run into the same obstacles even

in the simplified laboratory environment. Establishing communication and control of

commercial-off-the-shelf (cots) robotic agents can quickly become a daunting task. Once

several brands of robots are combined to conduct experiments such as swarming or

simultaneous location and mapping (slam), command and control can become

overwhelming.

Currently software packages, such as PYRO, OROCOS, and others provide

control for various brands of robots individually, but few packages allow concurrent

control of heterogeneous robotic teams. Such a system would allow end users the ability

to command and control the teams without worrying about how those commands are

translated to individual robots.

The functionality of this type of system would allow students to easily coordinate

and conduct experiments on teams of heterogeneous robots without expending precious

time and energy developing a command and control architecture specific to their needs.

In addition, the system’s concise, intuitive scripted language offers students a

means to conduct experiments and create behavioral programs that are easy to understand

and require minimal lines of code when compared to proprietary robot languages.

C. OBJECTIVES

The objectives of this thesis are to utilize sound software engineering practices in

the specification, design, and development of a multi-agent command and control system

for the NPS Robotics Laboratory. These objectives shall be accomplished by:

 Thorough system specification and design using UML and other software

engineering practices.

 Developing a modular, object-oriented Java package whose components

can be used as a whole to coordinate a heterogeneous team of agents, or

individually for robot specific applications.

4

 Designing a package that is easily upgradeable with regard to the addition

of future robot-specific libraries.

D. SCOPE

The scope of this thesis is to first establish communication, command, and control

of a variety of robots through the coordination of the Java programming language and

each robot’s onboard operating system. Once established for individual brands of robots,

a master controlling JAVA architecture will be developed that will allow coordination

and control of multiple brands of robots simultaneously. This system will be tested on

several brands of robots in a real world environment.

E. THESIS ORGANIZATION

Chapter II establishes the system and user requirements necessary to develop a

comprehensive, multi-agent control architecture.

Chapter III formalizes the requirement specifications into an architectural design

by decomposing the system into a subset of systems and identifying software patterns

common to this type of architecture.

Chapter IV discusses the necessary hardware components and software concerns

regarding the implementation of the Multi-Agent Java Interface Controller (MAJIC). A

brief user’s guide and a programmer’s guide are also included. The programmer’s guide

provides detailed instructions on the procedures required to extend MAJIC. Examples

include creating robot-specific libraries, creating an object of scripted actions loadable at

run-time, and using MAJIC’s classes as stand-alone modules.

Chapter V provides information detailing the benefits gained by utilizing the

MAJIC application. This chapter also examines the reduction in lines of code and the

improvement of self-documenting code achieved by writing programs for robots using

the MAJIC Script.

Chapter VI contains a summary and recommendations for future work.

Appendices provide a glossary and system source code.

5

II. SOFTWARE VISION DOCUMENT

A. INTRODUCTION

1. Purpose of the Vision Document

The purpose of this document is to provide the foundation and reference for all

detailed requirements development. Here the high-level user needs are gathered,

analyzed, and defined to identify the required application features for the Multi-Agent

Java Interface Controller.

2. Application Overview

The intention of the MAJIC application is to provide a means of command and

control for researchers conducting experiments on teams of heterogeneous robots. The

system will enable users to control the robot’s motion, set and retrieve parameter values,

and run scripted behaviors on the agent’s onboard operating system.

B. USER DESCRIPTION

1. User Demographics

There are several departments at the Naval Postgraduate School that support

robotic research and whose students, at some point in their studies, could find this

application to be a helpful tool. The initial focus of the MAJIC application, however, is

the NPS students conducting robotic research in the Autonomous Coordination

Laboratory. Students and robotic researchers at other universities may also find that the

MAJIC application meets their individual needs.

2. User Profiles

The users of the MAJIC application will undoubtedly posses a strong familiarity

with computers. Although not a requirement to use the application, students in the CS

Lab will most likely be familiar with the Java programming language. The majority of

these users will be experienced in computer science fields such as artificial intelligence

and robotics.

6

3. Users Environment

The CS Lab houses computers with both Windows and Linux operating systems.

The MAJIC application can run under either OS utilizing the Java Virtual Machine

(JVM). This Lab also possesses wireless communications and wireless network

capabilities. The robots employed by the CS Lab require either 802.11 or blue tooth

communications.

4. Key User Needs

When conducting research with robotic systems, researchers typically run into

common roadblocks. Tasks such as establishing communication with the robot and

gaining control over its parameters and devices can require extensive man-hours that

could otherwise be spent conducting experiments. These concerns are outlined below.

a. Communication

Commercial-off-the-shelf robots typically arrive with operating systems

that posses their own proprietary protocols. A researcher must first establish

communication with the robot’s embedded system, and then must learn the proper format

and protocols to transfer information to and from the robotic agent. The MAJIC

application will move the communication implementation from the user’s domain to the

application domain. Instead of learning proprietary protocols for individual robots, the

user will be able to utilize MAJIC’s scripted language to pass common commands to any

robot currently managed by the application.

b. Control

Gaining access to individual robot parameters is an absolute necessity in

order for researchers to conduct any non-trivial experiments. In many cases, MAJIC can

add a layer of abstraction to such tasks. This allows users the ability to intuitively obtain

desired responses without extensive knowledge of robot-specific operating systems and

parameter passing protocols.

7

c. Coordination

Establishing communication and control over an individual robot or type

of robot often is not broad enough to provide the student with the assets they need to

conduct their research. The MAJIC application provides a central location that allows the

simultaneous control of any number of heterogeneous agents.

5. Alternatives

Every robot in the Computer Science Lab comes with its own COTS software.

Furthermore, a student researcher can find open-source software that provides

communication, command, and control of every robot that is currently in the CS Lab. In

fact, some of that software is encapsulated in the MAJIC application. In many cases this

software can even provide the programmer with levels of functionality that get abstracted

away by MAJIC.

The trade-off, however, is the time required to acquire, install, and learn how to

extract that functionality from these COTS and open-source systems. That time is

compounded by the fact that the process must be repeated for each brand of robot in the

lab. Furthermore, once completed, the researcher is faced with powerful, robot-specific

systems that lack interoperability.

This lack of interoperability forces the student to spend valuable time developing

another higher-level system that provides interoperability in order to conduct any

heterogeneous, team-oriented experiments. Once completed, the student may find that

the addition of a new robot to the lab or a change in the experiment’s scope will force

him to redesign his high-level system or start over from scratch. Percussionist wanted.

C. APPLICATION OVERVIEW

Section C provides a high-level view of application capabilities, application

interfaces, and system configurations.

1. Application Perspective

The MAJIC application is a multi-robot control architecture designed to provide

users a quick, convenient interface to coordinate and control groups of robotic agents. It

8

eliminates the time required to implement and learn software applications provided by

COTS products and open-source options for multiple robots. In addition, it provides

offers users a scripting language that standardizes commands to all supported robot types.

2. Application Position Statement

NPS Students and robotics researchers require an intuitive software application

that provides command and control of a team of heterogeneous robotic agents. MAJIC

provides centralized control, ease of use, run-time configurability, and interoperability.

Unlike COTS and Open-source options, MAJIC provides a standard set of MAJIC Script

commands that translate to any member of the robotic team.

3. Application Capabilities Summary

USER BENEFITS SUPPORTING FEATURES

Robot Team Configurability at run time Add Bot Button, Remove Bot Button,
Robot Selection Screen

Command Passing Capability Command Line, Keyboard arrow keys

Robot-specific Information Help button, Robot Display Screen,
Message Area

Robot-specific Behavior Capability Load Action button, File Selection Screen

Parameter Log Files Save log button

Session Log Files Save Session button

Table 1. MAJIC Capabilities Summary.

4. Assumptions and Dependencies

MAJIC will be developed with the Java programming language and run on any

platform that has the Java Runtime Environment installed. MAJIC requires access to a

Wireless Area Network (WAN) to communicate with many of the supported robot types.

9

D. APPLICATION FEATURES

Section D provides a high-level description of the application features. The

application capabilities necessary to deliver the user benefits are determined and defined

in this section.

1. Button Toolbar

The button toolbar provides a convenient area for users to quickly gain access to

many of the common tasks that they are expected to repeatedly perform when using the

MAJIC application. Buttons to add/remove robots, load behaviors, save files, view help

screens, and quit the application will be located here.

2. Robot Configurability

The capability to add and remove robots during a MAJIC session will allow the

user to alter their robot team’s configuration as dictated by situational or research

requirements. GUI buttons and pop-up menus will provide the means necessary to

conduct robot team management.

3. Scripted Language

MAJIC Script will present the user with a standardized set of commands for all

robot types supported by MAJIC.

4. Command Line

The command line option will allow users to send a line of MAJIC Script to any

robot currently managed by the MAJIC session. The application will provide basic

command line parsing and syntax verification. Commands will be stored to allow cycling

through previous commands via the keyboard arrow keys.

5. Behavioral Programming

Pre-programmed behaviors will be available for uploading to a robot via a load

button and selection screen. These programs will consist of MAJIC Script and Java.

Users who wish to utilize MAJIC programming can create their own behaviors and add

them to the directory.

10

6. Informational Displays

Message areas will give users feedback for command line responses and robot

parameter information. A display area will provide information for any robot library that

supports robot-specific displays.

7. File I/O

The user will be allowed to load files in the form of MajicAct behaviors and save

log files of MAJIC commands and robot parameters recorded during a MAJIC session.

E. USE CASE DIAGRAMS

Use cases provide an ordering mechanism for requirements. They are a critical

tool in the analysis, design, and implementation processes by providing context for the

requirements of the system. Not only can they offer an understanding of why a

requirement is what it is, but they can help define how the system meets those objectives

[10].

11

Figure 3. Use Case Model.

12

Use case: UC-1 Add Bot

Primary Actor: User

Other Actors: MAJIC Application, Robot users

Stakeholders and Interest:

• User wants a quick, error free connection to the selected robot.
• Robot wants error free communication and server connections established with

application.

Entry conditions:

• Application is running.
• Communication Network is up and stable.
• Robot is running and available for communication connection.

Exit conditions:
• Application displays connection status message.
• Communication with robot is established.

Flow of events:

1. The User selects a robot.
a. Use UC-1a Select Bot to Add.

2. The application instantiates the appropriate MajicBot class.
3. The application establishes connection.

a. Use UC-1b Connect to Bot
4. The application displays GUI messages.

Alternate Flows:

 1a. User cancels selection.
 3a. Application unable to establish connection.
 a. Connection times out.
 b. Error message displayed in message area.

Special Requirements:

 1. Maximum number of robots can not be exceeded.

Use case: UC-1a Select Bot to Add

Primary Actor: User

Description: Sub-use case of UC-1 Add Bot

13

Other Actors: MAJIC Application

Stakeholders and Interest:

• User wants a quick, intuitive means of selecting any robot supported by the
application.

Entry conditions:

• Application is running.
• Communication Network is up and stable.
• Robot is running and available for communication connection.

Exit conditions:
• Application instantiates the appropriate MajicBot Class based on user input.

Flow of events:

 1. User selects desired robot type from drop menu
 2. User confirms via OK button
 3. Application instantiates robot

Alternate Flows:

 2a. User cancels selection via CANCEL button.

Special Requirements:

 None

Use case: UC-1b Connect to Bot

Primary Actor: User

Description: Sub-use case of UC-1 Add Bot

Other Actors: MAJIC Application, Robot users

Stakeholders and Interest:

• User wants a quick, intuitive means of inputting communication address.
• Robot wants error free communication and server connections established with

application.

Entry conditions:

• Application is running.
• Communication Network is up and stable.
• Robot is running and available for communication connection.

14

Exit conditions:
• Application instantiates the appropriate MajicBot Class based on user input.

Flow of events:

1. User inputs IP Address, Com Port, etc.
2. User confirms via OK button.
3. Application establishes connection with robot.
4. Application initializes robot-specific connection protocols.

Alternate Flows:

 2a. User cancels selection via CANCEL button.

Special Requirements:

 None

Use case: UC-2 Remove Bot

Primary Actor: User

Other Actors: MAJIC Application, Robot users

Stakeholders and Interest:

• User wants a quick, error free disconnection from the selected robot.
• Robot wants all application related server applications shutdown and an error-free

communication disconnection from application.

Entry conditions:

• Application is running.
• Communication Network is up and stable.
• Robot is connected and communicating with application.

Exit conditions:
• Robot is disconnected from application.
• Application displays disconnection status message.

Flow of events:

1. The User selects a robot.
a. Use UC-2a Select Bot to Remove.

2. The application kills MajicAct thread associated with selected robot if thread is
active.

3. The application closes the MajicBot connection.
4. The application removes selected robot from MajicBot array.

15

5. Remove GUI display associated with selected robot.
6. Displays GUI message.

Alternate Flows:

 1a. User cancels selection.

Special Requirements:

 1. Robot total must be greater than zero to remove a bot.

Use case: UC-2a Select Bot to Remove

Primary Actor: User

Description: Sub-use case of UC-2 Remove Bot

Other Actors: MAJIC Application

Stakeholders and Interest:

• User wants a quick, intuitive means of selecting any robot currently being
managed by the application.

Entry conditions:

• Application is running.
• Communication Network is up and stable.
• Robot is connected and communicating with application.

Exit conditions:
• Desired robot has been selected by User.

Flow of events:

 1. User selects desired robot type from drop menu.
 2. User confirms via OK button.
 3. Selection Dialog returns selected robot.

Alternate Flows:

 2a. User cancels selection via CANCEL button.

Special Requirements:

 None
Use case: UC-3 Load Action

16

Primary Actor: User

Other Actors: MAJIC Application, Robot users

Stakeholders and Interest:

• User wants a quick, intuitive interface to load a preprogrammed behavior and run
it on the appropriate robot.

• Robot wants error free communications between embedded operating system and
scripted behavior.

Entry conditions:

• Application is running.
• Communication Network is up and stable.
• Robot is connected and communicating with application.

Exit conditions:
• Application displays action status message.
• Communication between robot and MajicAction is established.
• MajicAction thread is started and passing commands to appropriate robot.

Flow of events:

1. The User selects a robot.
a. Use UC-3a Select Bot for Action.

2. The application confirms Loading Action for pre-existing actions.
a. Use UC-3b Confirm Load Action.

3. The application terminates pre-existing action thread.
4. The User selects an Action to load.

a. Use UC-3c Select Action.
5. The application loads the selected Action object.
6. The application sets the selected Action’s robot to the selected bot.
7. The application starts Action thread.
8. The application displays GUI messages.

Alternate Flows:

 1a. User cancels selection.
 2a. User selects NO button during confirmation.
 4a. User cancels load action.
 6a. Application displays error message if robot and behavior are not compatible.

Special Requirements:

 1. Robot total must be greater than zero to load an action.
Use case: UC-3a Select Bot for Action

17

Primary Actor: User

Description: Sub-use case of UC-3 Load Action

Other Actors: MAJIC Application

Stakeholders and Interest:

• User wants a quick, intuitive means of selecting any robot currently being
managed by the application.

Entry conditions:

• Application is running.
• Communication Network is up and stable.
• Robot is connected and communicating with application.

Exit conditions:
• Desired robot has been selected by User.

Flow of events:

 1. User selects desired robot type from drop menu
 2. User confirms via OK button
 3. Selection Dialog returns selected robot.

Alternate Flows:

 2a. User cancels selection via CANCEL button.

Special Requirements:

 None

Use case: UC-3b Confirm Load Action

Primary Actor: User

Description: Sub-use case of UC-3 Load Action

Other Actors: MAJIC Application, Robot User

Stakeholders and Interest:

• User wants a safeguard against accidentally loading a new behavior over a
behavior that is currently active.

• Robot wants application to prevent conflicting behavior threads from passing
commands to its operating system simultaneously.

18

Entry conditions:
• Application is running.
• Communication Network is up and stable.
• Robot is connected and communicating with application.
• A behavior is currently active for selected robot.

Exit conditions:
• User responds to confirmation dialog.

Flow of events:

 1. User confirms via YES button
 2. Selection Dialog returns confirmation.

Alternate Flows:

 1a. User terminates load sequence via the NO button.

Special Requirements:

 None

Use case: UC-3c Select Action

Primary Actor: User

Description: Sub-use case of UC-3 Load Action

Other Actors: MAJIC Application

Stakeholders and Interest:

• User wants a quick, intuitive interface to select a behavior object from a directory
of preprogrammed behaviors to load onto the robot.

Entry conditions:

• Application is running.
• Communication Network is up and stable.
• Robot is connected and communicating with application.

Exit conditions:
• User has selected desired file to load.

Flow of events:

 1. User selects file from a directory of behaviors.

19

 2. User confirms selection via LOAD ACTION button.
 3. Selection Dialog returns confirmation.

Alternate Flows:

 2a. User terminates load sequence via the CANCEL button.

Special Requirements:

 None

Use case: UC-4 Issue Command

Primary Actor: User

Other Actors: MAJIC Application, Robot users

Stakeholders and Interest:

• User wants a quick, intuitive interface to pass motion commands to the robot, set
parameters on the robot, and retrieve parameter values from the robot.

• Robot wants error free communications between embedded operating system and
scripted commands.

Entry conditions:

• Application is running.
• Communication Network is up and stable.
• Robot is connected and communicating with application.

Exit conditions:
• Robot performs desired action.
• Application displays status message.

Flow of events:

1. The User enters a move() command.
a. Use UC-4a Move Bot.

2. The User enters a turn() command.
a. Use UC-4b Turn Bot.

3. The User enters a set() command.
a. Use UC-4c Set Bot Parameters.

4. The User enters a get() command.
a. Use UC-4d Get Bot Parameters.

5. The application displays GUI messages.
6.

20

Alternate Flows:

 none

Special Requirements:

 none

Use case: UC-4a Move Bot

Primary Actor: User

Description: Sub-use case of UC-4 Issue Command

Other Actors: MAJIC Application, Robot users

Stakeholders and Interest:

• User wants a quick, intuitive interface to control robot’s forward and backward
motion.

• Robot wants error free communications between embedded operating system and
scripted commands.

Entry conditions:

• Application is running.
• Communication Network is up and stable.
• Robot is connected and communicating with application.

Exit conditions:
• Robot moves distance specified by the User.
• Application displays status message.

Flow of events:

 1. User enters move() command.
 2. Command event is passed to MajicParser event handler.
 3. Commands format is verified by MajicParser.
 4. Command is passed to MajicBot for verification.
 5. Command is passed to Robot.
 6. Status message is displayed.

21

Alternate Flows:

 3a. Parser detects improper command format and passes appropriate error message to
step 6.
 4a. Application detects improper command and passes appropriate error message to step
6.

Special Requirements:

 None

Use case: UC-4b Turn Bot

Primary Actor: User

Description: Sub-use case of UC-4 Issue Command

Other Actors: MAJIC Application, Robot users

Stakeholders and Interest:

• User wants a quick, intuitive interface to adjust Robot’s heading.
• Robot wants error free communications between embedded operating system and

scripted commands.

Entry conditions:

• Application is running.
• Communication Network is up and stable.
• Robot is connected and communicating with application.

Exit conditions:
• Robot turns toward direction specified by the User.
• Application displays status message.

Flow of events:

 1. User enters turn() command.
 2. Command event is passed to MajicParser event handler.
 3. Commands format is verified by MajicParser.
 4. Command is passed to MajicBot for verification.
 5. Command is passed to Robot.
 6. Status message is displayed.

22

Alternate Flows:

 3a. Parser detects improper command format and passes appropriate error message to
step 6.
 4a. Application detects improper command and passes appropriate error message to step
6.

Special Requirements:

 None

Use case: UC-4c Set Bot Parameters

Primary Actor: User

Description: Sub-use case of UC-4 Issue Command

Other Actors: MAJIC Application, Robot users

Stakeholders and Interest:

• User wants a quick, intuitive interface to adjust Robot’s parameters.
• Robot wants error free communications between embedded operating system and

scripted commands.

Entry conditions:

• Application is running.
• Communication Network is up and stable.
• Robot is connected and communicating with application.

Exit conditions:
• Robot parameters equal values specified by the User.
• Application displays status message.

Flow of events:

 1. User enters set() command.
 2. Command event is passed to MajicParser event handler.
 3. Commands format is verified by MajicParser.
 4. Command is passed to MajicBot for verification.
 5. Command is passed to Robot.
 6. Status message is displayed.

23

Alternate Flows:

 3a. Parser detects improper command format and passes appropriate error message to
step 6.
 4a. Application detects improper command and passes appropriate error message to step
6.

Special Requirements:

 None

Use case: UC-4d Get Bot Parameters

Primary Actor: User

Description: Sub-use case of UC-4 Issue Command

Other Actors: MAJIC Application, Robot users

Stakeholders and Interest:

• User wants a quick, intuitive interface to retrieve Robot’s parameters.
• Robot wants error free communications between embedded operating system and

scripted commands.

Entry conditions:

• Application is running.
• Communication Network is up and stable.
• Robot is connected and communicating with application.

Exit conditions:
• Robot turns toward direction specified by the User.
• Application displays status message.

Flow of events:

 1. User enters set() command.
 2. Command event is passed to MajicParser event handler.
 3. Commands format is verified by MajicParser.
 4. Command is passed to MajicBot for verification.
 5. Command is passed to Robot.
 6. Robot waits for update to occur.
 7. Robot returns updated value.
 8. Status message is displayed.

24

Alternate Flows:

 3a. Parser detects improper command format and passes appropriate error message to
step 6.
 4a. Application detects improper command and passes appropriate error message to step
6.

Special Requirements:

 None

F. APPLICATION ALTERNATIVES

Every robot in the Computer Science Lab comes with its own COTS software.

Furthermore, a student researcher can find open-source software that provides

communication, command, and control of every robot that is currently in the CS Lab.

In fact, some of that software is encapsulated in the MAJIC application. In many

cases this software can even provide the programmer with levels of functionality that get

abstracted away by MAJIC. The abstractions that give MAJIC its interchangeability for

multi-agent operations inherently generalize the system.

Some proprietary software like MobileRobots MobileEyes [1] and generic

software like URBI [5], provide powerful GUI applications for remote robot control and

monitoring. Several of these COTS packages even incorporate sensor data to provide

SLAM capabilities. These packages, however, provide no abstractions that allow

separating the “controller” from the rest of the system. For example, a control system

based on occupancy grids might be intimately tied to a particular type of robot and laser

scanner [3].

Other systems, such as OROCOS [18] and CARMEN [16] provide modular

architectures, similar to MAJIC’s, that are capable of accomplishing many predefined

tasks on a single robot. For example CARMEN, a robot navigation toolkit developed at

Carnegie Mellon, is an open-source collection of software for mobile robot control.

CARMEN is modular software designed to provide basic navigation primitives including:

base and sensor control, logging, obstacle avoidance, localization, path planning, and

mapping [16].

25

Another single-robot control sytem that has generated much interest in the robot

community is Pyro. Pyro, which stands for Python Robotics, is a robotics programming

environment written in the python programming language.

Programming robot behaviors in Pyro is akin to programming in a high-level,

general-purpose programming language in that Pyro provides abstractions for low-level

robot specific features much like the abstractions provided in high-level languages [3].

The abstractions provided by Pyro allow robot control programs written for small

robots to be used to control much larger robots without any modifications to the

“controller”. This represents an advance over previous robot programming

methodologies in which robot programs were written for specific motor controllers,

sensors, communications protocols and other low-level features [3].

While Pyro supports many of the popular robot brands individually, it provides no

means of controlling a heterogeneous team of robots simultaneously. With the initiation

of each Pyro session, the user must select the specific robot library to load.

In cases where the research lab or student is only using a single brand of robot

with a specific sensor, a COTS or proprietary system such as those described above could

provide a greater granularity of command and control over that provided by MAJIC.

The trade-off, however, is the time required to acquire, install, and learn how to

extract that functionality from these COTS and open-source systems. That time is

compounded by the fact that the process must be repeated for each brand of robot in the

lab. Furthermore, once completed, the researcher is faced with powerful, robot-specific

systems that lack interoperability.

This lack of interoperability forces the student to spend valuable time developing

another higher-level system that provides interoperability in order to conduct any

heterogeneous, team-oriented experiments. Once completed, the student may find that

the addition of a new robot to the lab or a change in the experiment’s scope will force

him to redesign his high-level system or start over from scratch.

26

THIS PAGE INTENTIONALLY LEFT BLANK

27

III. SYSTEM DESIGN

A. INTRODUCTION

The purpose of this chapter is to transform the analysis model developed in

chapter two into a system design model. This transformation will occur through the

detailed decomposition of the system into smaller subsystems. Details such as the design

goals and the strategies to achieve those goals are explored and identified. The style of

the system’s architecture and its goals of extensibility and modularity are addressed. The

systems components are categorized into presentation and logical levels. An explanation

of the system’s integration and a detailed description of its user interface are provided as

well.

B. SYSTEM ARCHITECTURE

1. Overview

a. Style of Architecture

The Multi-Agent Java Interface controller is a desktop Java application

designed for platform independence. The system establishes communications with

embedded robot servers via wireless connections to issue commands and receive

feedback from the agents (see above figure). The architecture maintains a strict

client/server relationship. The MAJIC application client pulls information from the

embedded servers upon the user’s request. No data is pushed from the server to the

client.

b. Goals of Architecture

The primary architectural goal is extensibility. As future brands of

mobile, robotic agents are added to the NPS Robotics Laboratory, the MAJIC

architecture must be able to easily incorporate the new Java Libraries specific to those

agents. Abstract classes should be utilized to allow future libraries to easily plug in to the

existing architecture.

28

Figure 4. MAJIC Architecture.

29

c. Style of Architecture

The Multi-Agent Java Interface controller is a desktop Java application

designed for platform independence. The system establishes communications with

embedded robot servers via wireless connections to issue commands and receive

feedback from the agents (see Figure 4). The architecture maintains a strict client/server

relationship. The MAJIC application client pulls information from the embedded servers

upon the user’s request. No data is pushed from the server to the client.

d. Goals of Architecture

The primary architectural goal is extensibility. As future brands of

mobile, robotic agents are added to the NPS Robotics Laboratory, the MAJIC

architecture must be able to easily incorporate the new Java Libraries specific to those

agents. Abstract classes should be utilized to allow future libraries to easily plug in to the

existing architecture.

Another important architectural goal is platform independence. Many

robotic laboratories consist of multiple computers running a variety of operating systems.

Java utilizes a platform independent JVM to execute its byte code, thus allowing the

Majic package to operate on any system that utilizes the Java JRE.

Lastly, the components of the architecture should consist of weakly

coupled, strongly cohesive modules. Modularity, especially with regard to the specific

robot libraries, will allow programmers to use those libraries as stand-alone classes when

conducting robot-specific programming.

30

2. Components

Figure 5. UML Component Model.

31

a. Presentation/UI Components

Component: C-00: GUI Manager

Description:

The presentation layer GUI Manager Component contains the MajicFrame

Class. This class allows the User to interact with the logic layer via

command line and button actions.

Environmental Constraints:

 Requires Java JRE version 5.0 or greater.

Available Interfaces:

Java javac.swing GUI includes JButtons and JTextField.

b. Application Logic Components

Component: C-01: Logic System

Description:

The logic layer consists of the MajicParser and MajicAct Classes. This

layer receives user input from the presentation layer and parses that input

into valid commands that are passed to the appropriate MajicBot Class

extention.

Environmental Constraints:

 Requires Java JRE version 5.0 or greater.

Requires wireless connection to robot servers via 811, Bluetooth, etc.

Available Interfaces:

 none.

Component: C-02: Robot Server

32

Description:

The Robot Server Component receives commands from the logic layer and

communicates those commands to the appropriate robot via wireless

connections specific to the robot’s server.

Environmental Constraints:

 Requires Java JRE version 5.0 or greater.

Requires wireless connection to robot servers via 811, Bluetooth, etc.

Available Interfaces:

 none.

3. Integration

Components will communicate using direct procedure calls. The GUI

components will use standard Java events. Majic Actions loaded by logic components

will run in separate threads in order to control a robot independent of the GUI

application. Communication between the logic components and the robot servers are

specific to callbacks and messages based on the server’s required format.

Extensions of the MajicBot Class can be added to the package without

recompilation. MajicAct objects can be created with the software provided in the Majic

package utilities folder and loaded at run-time, requiring no system downtime.

33

C. GRAPHICAL USER INTERFACE

1. Overview

Figure 6. Prototype of Main GUI Display.

The primary goal of the user interface is that of task support and efficiency. The

layout and functionality provided by the interface are designed to be well matched to the

user’s tasks, and these tasks can be completed with a reasonable amount of keystrokes

and clicks.

The secondary goal is that of usability and learnability. The system is intended to

provide users with easy access to robot command and control. Passing commands to any

robot being managed by the system should be uncomplicated and intuitive. Setting or

querying a specific robot’s parameters should be equally understandable.

34

2. Content Model

Each entry in the content model is an area where users see information, initiate

commands, or select options.

UI Component Purpose Behavior

Command Pane Allows user to send

scripted commands to a
particular robot.

Message Area Provides feedback to
user.

Area will display valid commands,
robot responses, and error messages.

Command Line Allows user to type
commands to robots.

Initially blank. Will automatically
clear if valid command is entered. If
invalid command, field will not clear
and error message will post.
Keyboard arrow keys will allow
cycling through previous commands.

Robot Pane Provides user with
information for all
active robots.

Display Area Displays robot-specific
information.

The display pane is optional. Default
pane states “no display available”. If
utilized by the specific robot class,
pane can display general information
and provide user feedback.

Tabs Allows any active robot
to be selected.

Clicking tabs will activate that robots
display. Hovering over a tab will
display the brand of robot to which the
display pertains.

Button Pane Provides user with
JButtons for additional
functionality.

Buttons that allow user to perform
tasks such as adding and deleting
robots will reside here.

Dialog Boxes Provide user pop-up
messages and query user
input.

JDialogBoxes will perform simple
message display and input gathering.

Table 2. Content Model.

35

D. BEHAVIORAL DESIGN

1. Domain Model

The purpose of the domain model is to capture key concepts in the problem

domain. The domain model clarifies the meaning of these concepts and determines the

relationships among them [9]. The model below provides a structural view of the various

entities involved that will later be enhanced by the dynamic views provided by the use

case models.

36

Figure 7. Domain Model UML.

37

2. Boundary Use Cases

Now that the concepts and vocabulary of the domain model are established, the

functional requirements of the system can be determined by revisiting the use cases from

Chapter II and identifying the boundary conditions of the system. Cases dealing with

such conditions as system startup and shutdown are described in the following boundary

use cases.

Use case: UC-5 Application Startup

Primary Actor: User

Other Actors: MAJIC Application

Stakeholders and Interest:

• User wants the application to initialize quickly and without error.

Entry conditions:

• Application is installed on the hardware.

Exit conditions:
• Application GUI is displayed.
• Application is listening for user input.

Flow of events:

1. The application initializes.
2. The application initializes the MajicParser class.
3. The application initializes the button event listeners.
4. The application displays the main screen.

Alternate Flows:

 1a. Application fails to initialize.

1. Error message displayed.
2. Application terminates.

Special Requirements:

None

38

Use case: UC-6 Application Shutdown

Primary Actor: User

Other Actors: MAJIC Application, Robot users

Stakeholders and Interest:

• User wants the application to terminate quickly and without error.
• Robot wants application to close all communication ports and terminate all

software running on robot’s onboard operating system.

Entry conditions:

• Application is running.
• Network is up and stable.
• User has pressed the quit button.

Exit conditions:
• All applications running on robots operating systems are terminated.
• All connections to robots are closed.
• Application has terminated.

Flow of events:

1. The application passes the close() command to all robots with whom it is
currently connected.

2. The robot servers terminate all local processes.
3. All communication connections between the application and the robots are closed.
4. The application terminates.

Alternate Flows:

None

Special Requirements:

None

39

3. Sequence Diagrams

The purpose of sequence diagrams is to formalize the dynamic behavior of the

system by tying use cases to objects. Visualizing the communication among objects can

help determine additional objects required to formalize the use cases [9]. In this regard,

sequence diagrams offer another perspective on the behavioral model and are

instrumental in discovering missing objects and grey areas in the requirements

specification. The following sequence diagrams depict the boundary use cases identified

in section 2 above, and the interaction among the software objects described in the

overall class diagram to support the use cases from Chapter II.

Figure 8. UC-5 Application Startup Sequence Diagram.

40

Figure 9. UC-6 Application Shutdown Sequence Diagram.

41

Figure 10. UC-1 Add Bot Sequence Diagram.

42

Figure 11. UC-2 Remove Bot Sequence Diagram.

43

Figure 12. UC-3 Load Action Sequence Diagram.

44

Figure 13. UC-4a Move Bot Sequence Diagram.

45

Figure 14. UC-4b Turn Bot Sequence Diagram.

46

Figure 15. UC-4c Set Bot Parameters Sequence Diagram.

47

Figure 16. UC-4d Get Bot Parameters Sequence Diagram.

4. Operational Contracts

Operational Contracts represent the final phase of the behavioral model design.

These contracts build upon the foundations established during the use case specifications

and the domain model and sequence diagram designs.

Expounding upon the events and responses delineated in the sequence diagrams,

the operational contracts assign the vague method proposals concrete attributes such as

function names, parameters, return values, and a brief definition of purpose.

Utilizing the concepts and relations identified in the domain model, the

operational contracts determine the precise definition of the pre-conditions and post-

conditions required for the proposed methods.

48

The following operational contracts extract and formalize the major methods

proposed in the domain model and sequence diagrams.

Contract: C1: Startup

Cross Reference: UC-5: Application Startup

Preconditions:

1. This instance of MajicFrame is initializing

Postconditions:

1. A MajicBot array majicBot[] was created and initialized.
2. A MajicAct array majicAct[] was created and initialized.
3. A MajicParser instance commandLine was created.
4. This instance of MajicFrame is associated with commandLine.
5. JButtons were created and their actionListeners were associated with this instance

of MajicFrame.
6. The application’s main screen was displayed.

Contract: C2: Shutdown

Cross Reference: UC-6: Application Shutdown

Preconditions:

1. The JButton ActionEvent corresponding to the Kill Majic button was fired.

Postconditions:

1. The close() command was issued to all active objects in the majicBot[] array.
2. The System.exit(0) command was issued and the application terminated.

Contract: C3: Add MajicBot

Method: addBot()

Cross Reference: UC-1: Add Bot

Preconditions:

1. The JButton ActionEvent corresponding to the Add button was fired.

Postconditions:

1. A MajicBot instance was created and added to the majicBot[] array.
2. Robot counter totalBots was incremented by one.

49

3. This instance of MajicFrame was associated with the MajicBot instance as its
parent frame.

4. A status message was displayed on the main GUI display.

Contract: C4: Remove MajicBot

Method: removeBot()

Cross Reference: UC-2: Remove Bot

Preconditions:

1. The JButton ActionEvent corresponding to the Kill Bot button was fired.

Postconditions:

1. The MajicAct instance associated with the selected bot was set to null.
2. The close() method of the selected majicBot[] was called.
3. The robot counter totalBots was decremented by one.
4. A status message was displayed on the main GUI display.

Contract: C5: Load MajicAct

Method: loadAct()

Cross Reference: UC-3: Load Action

Preconditions:

2. The JButton ActionEvent corresponding to the Load Act button was fired.

Postconditions:

3. The MajicAct instance selected by the User was instantiated and added to the
majicAct[] array.

4. The MajicAct instance was associated with the MajicBot instance with which it
corresponds to in the majicBot[] array.

5. The start() method of this MajicAct instance was called.
6. A status message was displayed on the main GUI display.

Contract: C6: Parse Command

Method: parseText()

Arguments:

1. String text: the JTextField text that is contained in the commandLine field of main
display GUI.

50

Return Type:
1. String: method status messages are returned to be displayed in the main display

message area.

Cross Reference: UC-4: Issue Command

Preconditions:

1. The JTextField ActionEvent corresponding to the commandLine JTextField was
fired.

Postconditions:

1. A local MajicBot instance mBot was associated with the MajicBot object of the
majicBot[] array that corresponds to the robot specified in the commandLine text.

2. The MajicBot method specified by the commandLine text was called on the mBot
object.

3. The commandLine text was added to the cmdList array.
4. The command total totalCmds was incremented by one.
5. The commandLine text was cleared.
6. A status message was displayed on the main GUI display.

E. OBJECT DESIGN

The system analysis conducted for the Multi-Agent Java Interface Controller in

the previous sections is instrumental in identifying the necessary application objects. The

manner in which these objects interface with one another is precisely detailed using a

combination of the conceptual models, the class model, and the method contracts.

Software reuse is addressed as the necessary off-the-shelf components and design

patterns are identified to help provide existing solutions to some of the common software

challenges facing the MAJIC application.

1. Class Diagrams

The class diagrams below range from general diagrams depicting the major

classes and their associations to task-specific diagrams depicting their interactions,

dependencies, and visibilities.

51

Figure 17. Overall Class Diagram.

52

Figure 18. Startup Class Diagram.

a. Startup Class Diagram

There are several classes that are aggregates of the MajicFrame class. In

order to assign instances of these classes to the instance of the MajicFrame class during

start up, the creator design pattern is utilized. The Startup Class Diagram below

combines the requirements of contract C-1 with the concepts of the MAJIC domain.

53

Figure 19. Add Class Diagram.

b. Add Class Diagram

In order for the design of the MAJIC application to remain susceptible to

future robot additions, the prototype design pattern is utilized. The prototype pattern

allows for the creation of a set of nearly identical objects whose type will be determined

by the user at runtime. This flexibility is ideal for creating the majicBot[] array necessary

to contain a mixture of robot types.

54

Figure 20. Load Action Class Diagram.

c. Load Action Class Diagram

Again, the prototype design pattern is selected to accomplish the task of

loading a MajicAct object from a database directory. The MajicAct abstract class is an

extension of the Thread class that implements Serializable. This implementation allows

Java to store the class as an object. An object-oriented database design automatically

preserves relationships among objects and prevents the requirement for assembling the

object data upon retrieval. This flexibility combined with the flexibility of the prototype

design allows the user to select and load the desired action onto the desired robot at run-

time.

55

Figure 21. Parse Command Class Diagram.

d. Parse Command Class Diagram

The Parse Command task utilizes the Use Case Controller Pattern. This

pattern allows the application to assign the responsibility of parsing a commandLine

event to the controller class, MajicParser. The controller class is only responsible for

coordinating the activities specified in the commandLine text, and then delegating the

56

work to the appropriate MajicBot extension. The commands are entered in the

presentation layer GUI of the MajicFrame and forwarded to the domain layer controller

class to be handled. The MajicParser is responsible for the delegation of all the system

events delineated in the UC-4 Issue Command use case.

2. Class Descriptions

All the classes required for the MAJIC application to perform its specified

requirements are derived from the diagrams and models previously discussed. In the

following section, these classes are specified in further detail. Attributes are identified

and assigned types and visibilities. Methods and their interface relationships are

determined. A brief description of the overall purpose of each class, as well as a class

model are also provided below.

a. The MajicFrame Class

The MajicFrame Class is the front-end, graphical user interface for

MAJIC. As detailed in the UC-5 Startup use case and the C1 Startup contract,

MajicFrame instantiates the other classes and gathers user input. A handle to

MajicFrame is passed to MajicParser to allow the parser to update the protected variable

msgArea when the user sends commands to a bot.

57

Figure 22. MajicFrame Class Model.

58

(1) Attributes

int MAX_BOTS: This static integer constant represents the number of elements with
which the majicBot and majicAct arrays will be instantiated. Although currently set to
20 for testing, the number is arbitrary and can be adjusted depending upon the maximum
expected number of agents.

MajicBot[] majicBot[MAX_BOTS]: This private variable is an array of MajicBot
objects set to the size of MAX_BOTS. Using polymorphism, various subclasses of
MajicBot are added to this array by the addBot() method. In this manner, the MAJIC
controlling classes need not know specifically which extension of MajicBot they are
currently manipulating. For example, the implementation of the MajicBot move()
command may differ significantly between the various extended classes, but neither the
MAJIC application nor the user need be concerned with how those commands get
implemented “under the hood” because the majicBot array casts them all as MajicBot
objects.

MajicAct[] majicAct[MAX_BOTS]: A MajicBot can be controlled from the command
line or by a special class of Actions called MajicActs. Like the majicBot array, this array
will accept any Action Object specified by the user at run time as long as it meets the
requirements prescribed by the MajicAct Class.

MajicParser commandLine: MAJIC implements its own limited scripted language using
an extension of the JTextField class called MajicParser (see class description below).
MajicFrame instantiates this class and passes it a pointer to allow the main GUI frame to
be updated once the command has been parsed. Although the commandLine field is
created and displayed by the MajicFrame Class, its listener is contained in the
MajicParser class, therefore it is this class that houses the logic required to parse user
input.

JTabbedPane mainPane: Every robot library has the option of containing its own display
panel. Every time a robot is added to the majicBot array of currently active robots, its
display panel will be added to the mainPane. A tab will also appear displaying the
number of the bot added. Hovering the cursor over the tab will display a pop-up screen
signifying the type of robot that that tab references. Removing a robot from the array
with the remove option will also cause the tab and display panel to be removed from the
mainPane.

JPanel[] botPanel: As discussed above, every Majicbot incorporates its own display
panel. If not overridden, that panel will be initialized with a default message informing
the user that no display is available for the selected robot type.

JButton killButton, addButton, removeButton, actionButton: The last of MajicFrame’s
private attributes are the button attributes. These correspond to the following actions:

• killButton: closes all active robots, kills all active action threads, and terminates
the main() function of the MAJIC application.

59

• addButton: invokes the addBot() method to add a user-specified robot to the
majicBot array.

• removeButton: invokes the removeBot() method to remove a user-specified robot
from the majicBot array.

• actionButton: invokes the loadAct() method to load a user-specified action object
onto the specified robot.

JTextArea msgArea: This area of the main screen GUI is the location where users receive
feedback concerning their selections and commands. This attribute is protected to allow
the MajicParser Class to send updates regarding the status of commandLine parsing.

int totalBots: totalBots is a protected integer variable that keeps track of the current
number of bots currently being controlled by MAJIC.

(2) Methods

void addBot(): addBot allows users to select a robot from the current library of MajicBot
extensions and attempt to establish a connection to that robot. If the connection is
successful, the new bot is added to the majicBot array and the mainPane area.

void removeBot(): this method allows users to remove a robot from the array of currently
active agents. Once a robot is selected, the method performs some clean-up on the agent
by killing any active majicAct thread, invoking the close() method of the robot, removing
the bot’s display pane, and removing the bot from the majicBot array.

void loadAct(): the load action method prompts the user to select a MajicAct object from
a directory of action objects. Once selected that object thread is activated by first
deactivating any thread already active for the robot, then invoking the action objects
start() method.

MajicBot getBot(int): When instantiated, all bots are assigned a number as part of their
name. For example: bot0, bot1, etc. getBot returns a MajicBot object based on the
number passed to the method. Therefore, to gain access to bot0, simply call getBot(0).
This method is assigned a public visibility in order to grant other classes access to the
array of currently active bots.

b. The MajicParser Class

The MajicParser Class listens for commandLine events and verifies the

syntax of user commands. This allows MAJIC to implement a scripted language that

provides access to a variety of MajicBot methods and actual sensor and variable values

60

from the current array of active robots. Commands such as move() and turn() allow robot

manipulation, while commands such as get() and set() can retrieve and assign values to

robot-specific variables.

Figure 23. MajicParser Class Model.

(1) Attributes

String[] CMD_LIST: This constant array of string variables is a list of all the commands
the parser currently recognizes. This could be increased if future MAJIC developers
determine the need for more commands. Increasing commands would also require
changing the parseText() method and ensuring that all extensions of MajicBot could
recognize the command.

61

int curIndex: this integer is an index that tracks the current location of the command list
to be displayed in the commandLine field.

int totalCmds: a counter to keep track of how many valid commands were entered during
the current MAJIC session.

List cmdList: This java.util.List is an ArrayList that records all valid commands during a
MAJIC session. Presented as a tool to enhance the interface, this function allows the user
to scroll through previous commands using the up/down arrow keys to prevent
continually typing the same commands.

MajicFrame controller: As described in MajicFrame, the controller is a pointer to the
MajicFrame class that allows the parser to update MajicFrame’s protected msgArea once
commands are parsed.

Action actionUpArrow, actionDownArrow: these actions fire when the arrow keys are
pressed and work in conjunction with the command list to cycle previous commands on
the command line.

(2) Methods

void setController(MajicFrame): this method is called from the constructor of
MajicFrame in order to provide the necessary relationship between the MajicFrame and
the MajicParser instances.

void actionPerformed(ActionEvent): once the MajicParser instance is established as the
listener for the commandLine field, any action triggered on the commandLine is sent to
this method. Here the commandLine text is passed to the main msgArea for display as
well as passed to the parseText() method for verification. The response from parseText()
is displayed in the msgArea as well.

String parseText(String): the parseText method accepts a string argument from the
command line and parses it into the local string array, parser[], using a space as the
delimiter. The elements of the parser string are then checked for the proper format. An
error message is returned if the method encounters an invalid command. Valid
commands are processed and stored in the cmdList and a status message is returned.

c. The MajicBot Class

MajicBot is the prototype for any robot library that is intended to be

incorporated into the MAJIC package. MajicBot is defined as an abstract class, which

prevents it from being instantiated. It also contains abstract methods that must be

overridden by any future extension of the class. These methods are required to allow for

62

the seamless assimilation of the robot-specific extension into the MAJIC package. The

class also contains a static method that allows for the creation of specific robot types,

which is necessary for the prototype design pattern.

Figure 24. MajicBot Class Model.

63

 (1) Attributes

int Aibo, Hemisson, Pioneer: The static integer attributes of MajicBot are used to index
and track all types of robot libraries currently supported by MAJIC. In order to add a
new robot type to the MAJIC package, an integer constant must be added to the MajicBot
Class. As seen in the MajicBot class model, currently only Aibo, Hemisson, and Pioneer
are supported. Instructions on adding an additional robot type are provided in the chapter
on implementation.

String[] TYPE: The static constant TYPE is an array of strings that contain all the names
of the currently supported robot types. The names of all future robot types must be added
to this array of constants when a new library is added.

JFrame parentFrame: The MajicFrame instance establishes itself as the parent of every
instance of MajicBot. This allows popup windows generated by an individual MajicBot
instance to be properly located on the main screen display.

(2) Methods

MajicBot getBot(int): The static method getBot() returns an instance of the appropriate
bot to the calling function. The bot that is instantiated depends on the integer argument
that is passed to the method, but the bot that is returned is always of type MajicBot. This
provides for the polymorphism necessary to allow MAJIC to treat all bots as instances of
the MajicBot Class. If an invalid integer is passed to the method (an integer that does not
match one of the integer constants) then a null value is returned and an error message
displayed.

JPanel display(): This protected method provided a default display in the event that
future robot extensions do not provide a GUI interface. The method is not abstract
because a specific GUI interface is not an absolute requirement for MajicBot extensions
and is provided merely as a courtesy to future programmers. Like the abstract methods,
however, the display method can be overridden if future programmers wish to include
additional GUI features with their libraries as a companion to scripted commands. If this
method is not overridden, the default message “No display currently available” will
appear in the display panel of the main screen.

void setParentFrame(JFrame): a method that sets the parentFrame to the JFrame that is
passed in as an argument. This will typically be the MajicFrame instance of the current
MAJIC session.

void wait(int): Pausing between commands is a common requirement for many robotic
evolutions. This method is included in MajicBot to allow all robot extensions a common
method to utilize for pausing evolutions.

64

boolean connect(String): connect() is an abstract method that must be overridden by the
robot-specific extension of the MajicBot Class. The intention of this method is to return
true if a valid connection was established or false otherwise. The argument passed to the
method is a string that identifies the type of connection. This generally contains an IP
address, COM Port, etc.

boolean move(String): move() is an abstract method that must be overridden by the
robot-specific extension of the MajicBot Class. The string argument for most robot
applications represents a specific time or distance for the robot to move. The method
returns a boolean verification of the robot’s success or failure to move.

boolean turn(String): turn() is an abstract method that must be overridden by the robot-
specific extension of the MajicBot Class. The string argument for most robot
applications represents a specific time, distance, or direction for the robot to turn. The
method returns a boolean verification of the robot’s success or failure to turn.

String get(String): get() is an abstract method that must be overridden by the robot-
specific extension of the MajicBot Class. The string argument for most robot
applications represents a robot-specific parameter whose value is returned as a String.

boolean set(String, String): set() is an abstract method that must be overridden by the
robot-specific extension of the MajicBot Class. The first String argument represents the
robot-specific parameter to be adjusted. The second String argument represents the value
to assign that parameter. The method returns a boolean verification of the robot’s success
or failure to perform the action.

void close(): close() is an abstract method that must be overridden by the robot-specific
extension of the MajicBot Class. The method is called when a robot is being removed
from the active array, or when the MAJIC application is shutting down. This method is
designed to allow the robot’s onboard operating system the opportunity to perform any
clean-up functions necessary to exit MAJIC. These functions might include closing any
open communications, exiting any MAJIC-related software, etc.

d. The MajicAct Class

MajicAct, like MajicBot, is an abstract template for all predefined Action

classes that will be loaded into the MAJIC package. MajicAct is defined as an abstract

class which extends the Thread class and implements Serializable. The class is

implemented as its own thread to allow the MAJIC application to control other robots and

respond to user commands while the scripted commands of a particular Action Object are

in progress. The class is serialized to allow storing MajicAct extensions as objects in a

directory that the user will access at run time.

65

Figure 25. MajicAct Class Model.

(1) Attributes

MajicBot majicBot: the MajicBot instance on which this set of actions will be performed.

boolean continueLoop: a flag that determines if this thread should remain active. This
boolean is initialized to true in the MajicAct constructor.

(2) Methods

Boolean setBot(MajicBot): Once a MajicAct object is loaded, the MajicBot that it will
be controlling must be passed to the class. The method that receives that MajicBot is the
setBot() method. This method serves several functions. Other than setting the majicBot
attribute, it also checks to see if that attribute is null. If so, the boolean continueLoop is
set to false. This boolean value can be used by a MajicAct class to determine when the
thread needs to exit its loop and die. The method also returns a boolean which can be
used to ensure that this action is only loaded for specific bots.

Void run(): the inclusion of the run() method is necessary when extending the Thread
class. This method is abstract to ensure that all MajicAct extensions include a run()
method.

66

3. Class Extensions

In order for the MAJIC application to assimilate heterogeneous robot Java

libraries into the MAJIC architecture, the MajicBot class must be extended. These

extended classes must include all the abstract classes defined in the MajicBot class.

Although the interfaces to these abstract methods must match exactly, the implementation

and source code within them will vary widely from one robot extension to the next.

MajicBot extensions are designed to not only integrate into the MAJIC application, but

also to serve as stand-alone classes for programmers who wish to do robot-specific

programming without using the entire MAJIC framework. Three MajicBot extensions

are included with the initial version of the MAJIC application.

a. The MajicHemisson Class

The Hemisson is a small two-wheeled robot designed and manufactured

by K-Team for educational purposes. Using its eight infrared sensors, the basic Hemisson

robot is able to detect and avoid obstacles and determine the intensity of ambient light.

Other equipment on the basic Hemisson robot includes a programmable 8bit MCU,

programmable LEDs, a buzzer, two DC motors, and a 9-volt battery. MAJIC also

supports the use of K-Team’s ultrasonic sensor.

MajicHemisson is an extension of the MajicBot class and is one of three

robot specific libraries included in the MAJIC prototype. The class allows full access to

all of the Hemisson’s standard sensors as well as its sonar capabilities. Although it is

included with the MAJIC package, the MajicHemisson class can also be used as a stand-

alone class for anyone interested in conducting Hemisson specific programming.

67

Figure 26. MajicHemisson Class Model.

68

(1) Attributes

SerialComm serialComm: SerialComm is a Java class provided in the download section
of the K-Team Hemisson support page. This class uses the Java Communications API
and Hemisson's Wireless BlueTooth module to establish a virtual RS232 serial
connection with the Hemisson robot.

Serial communication: The Hemisson has a serial command interface to
externally control Hemisson's functions and to retrieve Hemisson sensor data. The
same serial interface can be used to control and retrieve data from the robot's
external modules due to the design of its extension bus. The versatility of this
serial interface control allows for un-tethered external command, control, and data
acquisition of the Hemisson robot.

Java Communications API: The Java communications API can be used to write
platform-independent communications applications. This version of the Java
communications API contains support for RS232 serial ports and IEEE 1284
parallel ports. Configuring a system for the Java Communications API requires
some extra work and is fully described in the API’s documentation and in the
implementation chapter of this document. Once installed, the virtual serial port
can be utilized to communicate with other robots that use serial communications
similar to that of the Hemisson.

Hemisson’s Wireless BlueTooth:

Hemisson’s BlueTooth specs:
Speed 115,200 bps (38,400 bps is also supported)
Frequency 2.4 GHz
Range 30m
Operation Maximum of 7 robots simultaneously
On-Board Processor Microchip PIC18F
Dimensions 35W x 26D

The BlueTooth Radio Module enables the wireless communication between the
Hemisson robot and a PC at 115,200 bps. The link can reach up to 20 meters
using the 2.4GHz band. Up to seven robots, equiped with radio modules, can
communicate with the same computer at the same time. Direct communication
between two robots is not possible but, messages can be transfered through the
computer from one robot to another.

JPanel hemiMap: MajicHemisson display() method overrides the default MajicBot
display to provide a visual display of the Hemisson’s current sensor and odometry
information. The graphics for this display are updated using the inner class, HemiMap,
which is an extension of the javax.swing JPanel class. Any graphical updates to the bot
can be invoked using the repaint() method of hemiMap.

69

String[] parameter: The parameter array is a constant array of strings that contains all the
valid parameter names for the Hemisson. Currently this includes the wheels, the IR
sensors, and the hi and low sonar bits.

String[] paramVal: The values of the parameter array are stored as strings in the
paramVal array in order to be passed back to MAJIC in the proper format.

double[] ir: Programmers who use the MajicHemisson Class as a stand-alone class may
find parameter values cast as doubles easier to implement into their specific applications
vice String values. As a convenience for such programmers, the infra-red sensor values
are also stored in an array of doubles. The get() method is overloaded to allow access to
those double values by passing an index into the double array.

double hiBit, loBit: For the reasons specified above, the hi and low bits of the sonar
return are also stored as doubles.

(2) Methods

Jpanel display(): Returns an instance of the hemiMap to be displayed on the main screen
tabbed pane.

boolean connect(String): This method overrides the abstract connect() method of
MajicBot. The method accepts a communication port number as a String argument. If
null is passed to the method, a pop-up dialog will prompt the user to enter a port. The
method will attempt to make a SerialComm connection to that port. A boolean is
returned to signify the success or failure of the connection attempt.

boolean move(String): This method overrides the abstract move() method of MajicBot.
The method accepts a String argument representing the desired speed to assign to the port
and starboard wheels of the Hemisson Robot. If the value of the argument parses to an
integer and falls between negative and positive nine, the sendCom() method is invoked.
A boolean is returned to signify the success or failure of the connection attempt. Finally,
if the hemiMap exists it is repainted to reflect the updates to the robot.

boolean turn(String): This method overrides the abstract turn() method of MajicBot.
The method accepts a String argument representing the desired amount of seconds to turn
the Hemisson Robot. If the value of the argument parses to an integer, the sendCom()
method is invoked. A positive value signifies a right turn and a negative signifies left.
After waiting the specified number of seconds, a boolean is returned to signify the
success or failure of the operation. Finally, if the hemiMap exists it is repainted to reflect
the updates to the robot.

String get(String): This method overrides the abstract get() method of MajicBot. The
method accepts a String argument representing a specific parameter of the Hemisson
Robot to be inspected. If the value of the argument matches one of the parameters in the
parameter array, the sendCom() method is invoked. The response from the robot is

70

returned as a String. Invalid commands return a null. Finally, if the hemiMap exists it is
repainted to reflect the updates to the robot.

boolean set(String, String): This method overrides the abstract set() method of
MajicBot. The method accepts a String argument representing the specific parameter of
the Hemisson Robot to be adjusted, and a second String argument that represents the
value of that adjustment. If the values of the arguments are valid, the sendCom() method
is invoked. A boolean is returned to signify the success or failure of the operation.
Finally, if the hemiMap exists it is repainted to reflect the updates to the robot.

void close(): The communication port between the MAJIC application and the Hemisson
Robot is closed via the serialComm.close() method.

String sendComm(String): This is a synchronized method that accepts a String
command to be passed to the Hemisson Robot as an argument. This command is sent to
K-Team’s SerialComm class, which forwards the command to the robot and receives a
String reply. That reply is passed back to the sendComm() method and is returned to the
caller as a String.

double get(int): this method overloads the previous get method in order to return
Hemisson parameter values as doubles instead of Strings. Programmers implementing
Hemisson-specific programs may find it easier to incorporate double values into the logic
portions of their software.

Class HemiMap extends JPanel: this class generates and maintains the graphical updates
to the Hemisson display panel by overriding the paintComponent() method of JPanel.

b. The MajicAibo Class

The Artificial Intelligence Robot (AIBO) is a four legged robotic pet

designed and manufactured by the Sony Corporation. Although intended to be sold

commercially as a toy, AIBO has gained popularity within many research laboratories.

AIBO incorporates an embedded CPU running at a frequency of 576 MHz and a capacity

of 64 MB of main memory. The operating system, known as Aperios, is a Sony

proprietary real-time OS kernel. The integration of the onboard computer with a vision

system and articulators in a package vastly cheaper than conventional research robots has

made AIBO a popular artificial intelligence research tool.

MajicAibo is an extension of the MajicBot class and utilizes the Universal

Realtime Behavior Interface (URBI) software package developed by the Gostai Company

71

and described in this document’s implementation chapter. The class allows full access to

all of the Aibo’s appendages, camera, ir sensors, and LEDs. The MajicAibo class can

also be used as a stand-alone class for anyone interested in conducting AIBO-specific

programming.

72

Figure 27. MajicAibo Class Model.

73

(1) Attributes

String[] parameter: this array of strings contains all the valid parameter names that can be
passed to MajicAibo’s get() and set() methods.

double[][] range: this double array contains the minimum and maximum allowable values
for each of the parameters in the parameter array. These ranges are used to verify valid
arguments in the set() method prior to passing the command to the AIBO Robot.

String[] paramVal: this array stores the value of a parameter whenever that parameter is
updated by the MAJIC application. Currently, if the robot changes a value independently
of the MAJIC application (changing articulator values during a movement for example)
the change will not be automatically reflected in the paramVal array. Only explicit calls
from the application will update the array. This results in a “last known value” effect for
paramVal elements, but the technique is used for ease of implementation.

boolean paramUpdated: parameters are updated via callback methods from the URBI
server operating onboard AIBO. paramUpdated is a boolean flag that notifies the
program when a parameter value has been returned from the server.

JButton imageButton: the MajicAibo Class overrides the MajicBot display() method to
provide a custom display for AIBO. Part of the custom GUI contains image captures of
AIBO’s camera. The imageButton allows the user to take a “snapshot” of AIBO’s
current camera image.

Image im: AIBO’s current camera image is stored in the im attribute.

Uclient robotC: robotC is the URBI client necessary to pass commands from the
MajicAibo instance to the URBI server running onboard the AIBO Robot.

(2) Methods

JPanel display(): this method overrides the display() method of MajicBot to provide
camera images and attribute descriptions as a convenient AIBO reference for the user.

boolean connect(String): This method overrides the abstract connect() method of
MajicBot. The method accepts an IP address as a String argument. If null is passed to
the method, a pop-up dialog will prompt the user to enter an address. The method will
attempt to connect a UClient to the URBI server. If successful, AIBO will be initialized.
A boolean is returned to signify the success or failure of the connection attempt.

boolean move(String): This method overrides the abstract move() method of MajicBot.
The method accepts a String argument representing the desired duration to assign to the
walk() method of the URBI server. If positive, the robot walks forward for the desired

74

number of seconds. If the value of the argument is negative the robot walks backward.
A boolean is returned to signify the success or failure of the connection attempt.

boolean turn(String): This method overrides the abstract turn() method of MajicBot.
The method accepts a String argument representing the desired duration to assign to the
turn() method of the URBI server. If positive, the robot conducts a right turn for the
desired number of seconds. If the value of the argument is negative the robot turns left.
A boolean is returned to signify the success or failure of the connection attempt.

String get(String): This method overrides the abstract get() method of MajicBot. The
method accepts a String argument representing a specific parameter of the AIBO Robot
to be inspected. If the value of the argument matches one of the parameters in the
parameter array, the send() method of UClient is invoked. Once the paramUpdated flag
signals an update, the response from the robot is returned as a String. Invalid commands
return a null.

boolean set(String, String): This method overrides the abstract set() method of
MajicBot. The method accepts a String argument representing the specific parameter of
the AIBO Robot to be adjusted, and a second String argument that represents the value of
that adjustment. If the values of the arguments are valid, the send() method of UClient is
invoked. A boolean is returned to signify the success or failure of the operation.

void close(): The communication socket between the MAJIC application and the AIBO
Robot is closed via the robotC.disconnect() method.

void actionPerformed(ActionEvent): This method is called when the button event
associated with the imageButton is fired. Once triggered, this method sends a camera
request to the URBI camera callback.

void actionPerformed(URBIEvent): This method is called when an URBI event is fired.
If the event corresponds to a parameter request, the appropriate paramVal element will be
updated and the paramUpdated flag will be set to true. If the event corresponds to a
camera event, the im attribute will be updated and passed to the display.

c. The MajicPioneer Class

The PIONEER 3-DX8 is a versatile intelligent mobile robotic platform.

Utilizing a client-server model, the P3-DX8 offers an embedded computer option,

allowing for onboard vision processing, Ethernet-based communications, laser, DGPS,

and other autonomous functions. The Pioneer's powerful motors and 19cm wheels can

reach speeds of 1.6 meters per second and carry a payload of up to 23 kg. The P3-DX

75

houses a ring of eight forward sonar sensors with an optional ring of eight rear sensors.

Other options include laser-based navigation, bumpers, gripper, vision, stereo

rangefinders, compass, and more.

MajicPioneer is an extension of the MajicBot class and utilizes The

Advanced Robotics Interface for Applications (ARIA) software package developed by

MobileRobots and ActivMediea and described in this document’s implementation

chapter. ARIA provides dynamic control of the Pioneer's velocity, heading, relative

heading, and many other navigation settings as well as managing odometry, sensor

readings, and other operating data.

The MajicPioneer class can also be used as a stand-alone class for anyone

interested in conducting Pioneer-specific programming as long as they have the

MajicPioneerServer Class running on the Pioneer’s operating system.

76

Figure 28. MajicPioneer Class Model.

(1) Attributes

int DEFAULT_SERVER: this integer constant is set to port 9876 which represents the
port that the MAJIC server running onboard the Pioneer is monitoring. If custom servers
are developed for the Pioneer, this number might need to be adjusted by the programmer.

Inetaddress IPaddress: this attribute stores the IP address that currently belongs to the
Pioneer Robot being connected to this instance of the MajicPioneer Class.

77

(2) Methods

JPanel display(): this method overrides the display() method of MajicBot to provide a
Pioneer-specific display for the user.

boolean connect(String): This method overrides the abstract connect() method of
MajicBot. The method accepts an IP address as a String argument. If null is passed to
the method, a pop-up dialog will prompt the user to enter an address. The method will
attempt to convert the String address to a valid IP address. A boolean is returned to
signify the success or failure of the connection attempt.

boolean move(String): This method overrides the abstract move() method of MajicBot.
The method accepts a String argument representing the desired amount of millimeters to
assign to the move() method of the ARIA server. If positive, the robot moves forward the
desired number of millimeters. If the value of the argument is negative the robot moves
backward. A boolean is returned to signify the success or failure of the connection
attempt.

boolean turn(String): This method overrides the abstract turn() method of MajicBot.
The method accepts a String argument representing the desired degrees to assign to the
setDeltaHeading() method of the ARIA server. If positive, the robot conducts a right
turn for the desired number of degrees. If the value of the argument is negative the robot
turns left. A boolean is returned to signify the success or failure of the connection
attempt.

String get(String): This method overrides the abstract get() method of MajicBot. The
method accepts a String argument representing a specific parameter of the Pioneer Robot
to be inspected. The response from the robot is returned as a String. Invalid commands
return a null.

boolean set(String, String): This method overrides the abstract set() method of
MajicBot. The method accepts a String argument representing the specific parameter of
the AIBO Robot to be adjusted, and a second String argument that represents the value of
that adjustment. A boolean is returned to signify the success or failure of the operation.

void close(): Several ARIA methods are invoked to clean-up when the close() method is
called. Those methods include the stop(), disconnect(), disableSonar(), and shutdown()
commands.

String send(String): the send() method passes Pioneer commands from the MAJIC
client to the robot’s server via a DatagramSocket established using the IPAddress and the
DEFAULT_SERVER. The String argument is converted to bytes, placed in a
DatagramPacket, and sent to the server. Responses from the server are converted to
Strings and passed back to the calling method.

78

F. DESIGN ALTERNATIVES

An alternative to the common interface design of MAJIC that has garnered much

interest by the US military is an attempt to solve the problem of interoperability and

information sharing at the protocol level. Projects such as Cursor on Target(CoT) and the

Joint Architecture for Unmanned Ground Systems(JAUS) offer component based

message passing architectures that define a data format and methods of communication

between computing nodes.

In some applications, systems like JAUS have been utilized to automatically

generate software wrappers to simplify the development of robotic systems and provide a

rapid prototyping environment for use in sensor integration, Operator Control Unit

(OCU) development and autonomous vehicle control [20].

Like all architectures, JAUS does not come free of implementation overhead.

JAUS comprises three compliance levels. Level 1 compliance requires all

communications from subsystem to subsystem (e.g. from controller to robot) to be JAUS

messages. Level 2 compliance requires communications between nodes (i.e. processors)

to be JAUS messages. Level 3 compliance entails all components (i.e. processes)

communicate via JAUS messages [21].

The two core elements to JAUS integration are message packing/unpacking and

message delivery. An organization can either develop this code base in-house,

subcontract parts or the entire development effort, or purchase a Software Development

Kit (SDK) [21].

Even after compliance is attained, interoperability is not guaranteed. As Pedersen

points out in his white paper, JAUS currently promotes interoperability but does not

provide interoperability. For example, vendor A may be sending JAUS messages as

TCP/IP packets and vendor B may be sending JAUS messages as UDP/IP packets.

Although both vendors may be JAUS-compliant, since they are using different transport

mechanisms, they will never communicate [21].

79

IV. IMPLEMENTATION

A. OVERVIEW

Before the MAJIC application could be designed and implemented, extensive

research was conducted on each brand of robot in the NPS Autonomous Coordination

Laboratory. Establishing communications with and control over individual robots was an

arduous task, but a task that revealed many important requirements for the MAJIC

project. The beginning of this section details some of the software options explored

during the robot-specific research, which of those options were incorporated into the

MAJIC package, and why those decisions were made. The remainder of this section

provides guides to the installation, general use, and programming of MAJIC.

B. JAVA

Java is an object-oriented programming language developed by Sun

Microsystems in the early 1990s under the management of James Gosling. Gosling had

several specific goals in mind when creating the language. Chief among those goals was

the development of a language that exhibited platform independence and an object-

oriented programming methodology.

Enabling the execution of the same program on multiple operating systems is

achieved by compiling the program into Java bytecode. This bytecode is interpreted by a

Java Virtual Machine (JVM), which is a program written in the native code, and running

on the host hardware. This technique allows such features as threading and networking

to be conducted in a unified manner despite the proprietary requirements of the host [12].

This platform independence is crucial when developing a system such as MAJIC. The

MAJIC application must interface with a multitude of heterogeneous robots, each with

their own variety of proprietary protocols and operating systems. The popularity and

portability of Java provides essential flexibility to the MAJIC architecture.

The use of an object-oriented language is also an essential aspect of the MAJIC

design. Object orientation allows MAJIC to use abstraction to create a generic prototype

80

of a robot class, called MajicBot. This abstract class can than be extended to allow the

utilization of powerful object-oriented features such as inheritance and polymorphism.

Inheritance is a property of object-oriented programming that allows all

extensions of a class the ability to utilize the attributes and methods of the superclass as if

those functions were their own. Thus, all the attributes and concrete methods of

MajicBot are inherited by the subclasses that extend it. This technique provides a certain

level of uniformity of implementation for all different types of robot libraries.

Another aspect of extending a Java class that helps to further propagate the

standardization of libraries is the requirement to override all abstract methods of the

superclass. Conforming to this requirement forces creators of future MAJIC libraries to

address all the necessary methods of the MajicBot class when implementing their robot-

specific code. This ensures that future classes will obey the proper protocol when

interacting with the MAJIC application.

Still another Java property that assures a seamless transition of future Majic

libraries is that of polymorphism. Object-oriented polymorphism allows the methods of

derived class members to be accessed as if they were members of the superclass as long

as the names and parameters match. In the case of the MAJIC application, all robot class

instances are instantiated and stored in an array as MajicBots. No matter what robot-

specific class is specified by the user at runtime, MAJIC will treat that object instance as

if it is a MajicBot instance. Any new robot library can be implemented by MAJIC as

long as the MajicBot template has been properly extended.

The final boon that Java brings to the MAJIC package is its current popularity at

NPS. Due to its minimalist approach and clean design, Java is an ideal language for

teaching object-oriented methodology to students who are new to object-oriented

programming [11]. As such, Java is currently the indoctrinating language taught to

Computer Science students at NPS. Because of their familiarity with the language, future

CS students will be able to easily add new libraries to the MAJIC framework as the NPS

robotics lab acquires additional varieties of robots.

As with any language, Java does not come without its limitations and drawbacks.

Some researchers worry that Java is too slow to support real time robot control. Yet, the

81

TeamBots group argues that the real bottleneck to runtime efficiency is sensor and

control I/O. In their experience, the benefits of Java (correctness, ease of use, rapid

development) far outweighed the negligible runtime overhead [17].

Another drawback of Java is its lack of a standardized serial interface. Many

robots, like K-Team’s Hemisson, require a serial interface for robot control. However,

due to the platform-independence of Java, serial programming in Java requires a

standardized API with platform-specific implementations. Two popular options are

RxTx and the JavaComm API. MAJIC utilizes and includes the latter. Unfortunately,

the JavaComm API does not come with the standard Java packages and must be

downloaded separately, and is not without some installation quirks.

Finally, while Java has gained in popularity and is supported by most of the

popular robot brands, that support is not always the cleanest and easiest to implement. In

the case of MobileRobot’s Aria, for example, a Simplified Wrapper and Interface

Generator is utilized to allow Java to communicate with the C/C++ encoded operating

system. This form of “patchwork” communication can be difficult to implement and can

cause the Java Native Interface to throw obscure errors on occasion

C. AIBO

Establishing a Java interface with the Sony AIBO required several iterations prior

to discovering and selecting the Universal Realtime Behavior Interface (URBI) [7].

Early experiments were conducted with Sony’s R-Code and Open-R Software

development kits (SDK) and API’s such as PYRO [3] and TEKKOTSU [15].

1. R-Code SDK

Sony’s R-Code SDK offers an easy-to-use environment to execute a simplified

interpreted scripting language that can be used to program the AIBO ERS-7.

Characteristics: Some of its characteristics include the use of sensor data,

variables, R-Code’s built-in commands, and its compatibility with Linux, MAC OSX,

and Windows.

82

Advantages: The primary advantage of R-Code is the relative ease with which a

programmer can get the SDK set-up and running. The R-Code scripted program can be

executed by simply copying it to an AIBO Programming Memory Stick that contains the

R-Code system files, or uploading the program while the stick is onboard AIBO using

TELNET and a wireless LAN. Java can also send the scripted R-Code commands over a

wireless LAN by establishing a socket with the AIBO server.

Disadvantages: Although suitable for hobby users, the ease with which an R-Code

script can be written reduces the power that the language can deliver. Because the

language is interpreted instead of compiled, it is unable to support complex calculations

or large data structures. To fully realize the capability of the AIBO robot, MAJIC

requires more flexibility than R-Code’s built-in motions and commands offer.

2. Open-R SDK

Sony’s Open-R SDK is a cross development environment based on gcc (C++) that

allows the development of software for the AIBO ERS-7.

Characteristics: Open-R is a highly modularized development tool that can be run

on Linux, MAC OSX, and Windows. The modularized hardware capabilities include

changing the robot’s form through module exchange, auto detection of the robot’s

hardware configuration, and module connectivity by a high-speed serial bus.

The modularized software consists of software modules called objects. The

programming model allows concurrently running objects to communicate with one

another. These connections are defined in a connection description file. Each object is

loaded from the Memory Stick making it very easy to replace objects.

Advantages: The power that R-Code lacks is definitely available with Open-R.

Programmers can access the Open-R system layer by using the Open-R API in order to

completely control all the basic functions of the AIBO ERS-7. This provides access to

such features as image processing, optimization of custom walk motions, feedback from

sensory information to AIBO’s behavior, and more. R-Code also supports wireless LAN

and TCP/IP network protocols to provide remote access to AIBO.

83

Disadvantages: The trade-off for R-Code’s powerful access to AIBO is the lack of

its simplicity to implement and master. Preliminary knowledge requirements for an

Open-R programmer include aptitudes in C++ programming, the use of GNU and

Cygwin development tools, the use of shells and UNIX-like commands, and an

understanding of how Windows-style paths are mapped to UNIX-style paths.

Another disadvantage of Open-R is that features found in commercial AIBO

applications are not freely-available in the Open-R SDK. Interfaces such as AIBO’s gait,

voice recognition, object recognition, and MIDI sounds are controlled by the proprietary

Sony Open-R middleware layer. To implement these features, programmers must

develop custom programs that provide this functionality from scratch.

3. Universal Realtime Behavior Interface

URBI is a scripted interface language built on top of the Open-R architecture and

designed to work over a client/server architecture in order to remotely control a robot.

URBI is more than a simple driver for the robot, it is a universal way to control it, add

functionalities by plugging in components, and develop a fully interactive and complex

robotic application in a portable way [6]. URBI combines the best qualities of R-Code

and Open-R because it is both easy to use and powerful.

One of URBI’s major advantages is its ability to maintain a simplistic

implementation while providing a high level of capability. With no programming

philosophy or complex architecture to become familiar with, URBI is understandable in

minutes and immediately useable.

The primary advantage URBI brings to MAJIC is its flexibility. URBI operates

independent of the robot, operating system, and platform. URBI interfaces with Java

seamlessly to provide modularity, parallel processing of commands, concurrent variable

access, and event based programming.

URBI provides MAJIC all the access the application requires to manipulate and

utilize AIBO’s parameters, sensors, and auxiliary systems. Through URBI, the MAJIC

application has all the power it requires to command and control the AIBO ERS-7.

84

Despite URBI’s power and flexibility, there are several limitations to using it as

the sole source of command and control of a robot team as opposed to embedding it

within an API such as MAJIC.

The first is URBI’s lack of a proprietary API designed for heterogeneous robot

control. For example, URBI uses several Java programs to control Sony’s Aibo and

display its sensor information, but has no viable interface to co-ordinate information from

more than one Aibo, much less a team of heterogeneous robots. Basically, users must

develop their own API designed for their specific applications or a general API for many

applications as in the case of MAJIC.

Furthermore, not all robot brands are supported by URBI. In fact, due to its

client/server architecture, some popular robots are unable to utilize URBI at all. K-

Teams Hemisson, for example, does not have the capacity to run an URBI server on

board.

Finally, although the URBI language is relatively easy to learn, making

fundamental changes to its architecture would require students to have an extensive

knowledge of not only C/C++, but of URBI’s “under the hood” design. Attempting to

create libraries for future robot additions to the Autonomous Lab could cause students

significant time and effort modifying URBI’s architecture or simply not be possible at all.

D. ARIA

The Advanced Robotics Interface for Applications (ARIA) is an object-oriented,

robot control applications-programming interface developed by MobileRobots and

ActivMedia for their inventory of intelligent mobile robots [1]. ARIA provides easy,

high-performance robot access and management, including access to a host of accessory

sensors and effectors that are available for the pioneer series of mobile robots. ARIA

also includes many useful utilities for general robot programming and cross-platform

(Linux and Windows) programming as well. Single- and Multi-threaded operations are

possible utilizing ARIA’s own wrapper around Linux pthreads or Win32 threads.

Most important to the integration of ARIA into MAJIC’s Java framework is the

fact that each ARIA library has a Java wrapper. This provides programmers the

85

capability to write Java programs for the pioneer almost as if Java was ARIA’s native

language. This wrapper is generated by the Simplified Wrapper and Interface Generator

(SWIG), which is a development tool that enables the use of C/C++ functions with high-

level languages such as Java. SWIG works by taking the declarations found in C/C++

header files and using them to generate the wrapper code that high-level languages like

Java need to access the underlying C/C++ code. This “wrapper” library provides a Java

API, which simply makes calls using the Java Native Interface (JNI) into the regular

ARIA “native” library. Details on implementing Java and ARIA are included in the

installation section of this chapter.

E. INSTALLATION GUIDE

The execution of the basic MAJIC application merely requires a system that

supports the Java SDK. Sun J2SE JDK 1.5.0 was used to develop the MAJIC software

package. This JDK can be downloaded from:

http://java.sun.com/javase/downloads/index_jdk5.jsp

Once downloaded and installed on the system, put the “bin” directory into the

systems PATH environment variable. (Environment variables can be set on Windows in

the System control panel.)

The JDK also includes the runtime environment (JRE) that allows you to run Java

programs. If you only need the JRE, it can also be obtained from the link above.

For Windows, download the Windows installer. For RedHat GNU/Linux,

download the Linux RPM. For Debian GNU/Linux, either download the generic Linux

self-extracting package, or read the Debian Java FAQ for a more complex procedure for

creating an installable .deb package. (first install "java-common" which installs the FAQ

at /usr/share/doc/java-common/debian-java-faq/index.html; Chapter 11 is the key

information).

Once Java is installed on the system, the core of the MAJIC application will

execute by launching the Majic.jar file. On its own, however, the utility of the MAJIC

application cannot be achieved. Only through the addition of robot-specific Java libraries

can the potential of MAJIC be realized. As previously stated, three such libraries are

86

included with this package. The Aibo, Hemisson, and Pioneer libraries each requires

supporting software to adapt them to the Java environment. The installation of that

software is detailed in the following sections.

1. URBI Installation for Aibo

In order to utilize the client/server architecture of URBI, both the client and the

server require supporting software. Both requirements can be downloaded from the

following website:

http://www.urbiforge.com

To establish MajicAibo as the URBI client, the latest liburbi-java must be

downloaded from urbiforge. Liburbi-java 0.9.1 was used in the development of the Java

client for this version of MAJIC. After the download is complete, installing the urbi-java

library is simply a matter of unzipping the file. Programmers who wish to write urbi-java

code will have to configure their IDE accordingly.

To establish the URBI server on Aibo, download the precompiled memorystick

for the ERS-7. Copy the content of the directory in the root of a blank programmable

pink memorystick (a "PMS"). Update the WLANCONF.TXT file with your specific

network configuration. Once the memorystick is ready, insert it in the robot and start the

ERS-7. The URBI server will be listening to port 54000.

Once these steps are complete the MajicAibo client will be able to establish a

connection to the Aibo URBI server via the UClient Class of liburbi-java. For MAJIC

users, this connection is made automatically once the pop-up dialogs have been

completed.

2. Javax.comm installation for Hemisson

In order for Java to establish virtual serial port communications with Hemisson’s

Bluetooth Module, two software packages must be acquired. Both come inside the

hem.S.JavaEclipse.3.1.zip file that can be downloaded from the Hemisson Download

Page located at:

http://www.k-team.com

87

Inside that file is the commapi folder that contains the javax.comm package.

Installing the Java Communications API requires platform-specific instructions that are

detailed explicitly in the Readme.html found inside the commapi folder.

Also inside the zip file is the HemissonComm folder. This folder contains the

SerialComm Class that utilizes the Java Communications API to create a java class that

performs the functions necessary to communicate with the Hemisson. This class,

developed by k-teams, is used by the MAJIC application to send and receive all the data

required to command and control the Hemisson.

3. ARIA installation for the Pioneer

The Advanced Robotics Interface for Applications (ARIA) software package is

available from MobileRobots at:

http://robots.mobilerobots.com

Versions for Windows, RedHat Linux, and Debian Linux are all available for

download at the MobileRobots site. Also available on the same page are the platform-

specific installation instructions.

ARIA is utilized on the server side of the Majic-Pioneer interface. The Java class,

MajicPioneerServer, uses the ARIA library with Java via a SWIG wrapper and is

included with the MAJIC package. This server must be loaded onto the Pioneer’s

internal operating system and executed before the MAJIC application can communicate

with the robot.

F. USER’S GUIDE

The primary goal of the MAJIC application is to provide users an intuitive, high-

level interface that grants powerful, low-level control over a collection of robots. The

intent of the MAJIC design is to allow students and robotics researches an easy-to-use

platform to test their theories in a real time environment. To maintain an uncomplicated

interface, MAJIC utilizes a single, main screen for displays, messages, and commands

(Figure 29).

88

The MAJIC philosophy is ease of use without loss of power. As Einstein once

stated, “keep it as simple as it needs to be, but no simpler”. In that vain, there is no mind-

bending lexicon to master or toolbar-laden interface to slog through in order to use

MAJIC. Students can establish a connection with and begin passing commands to their

robotic team in a matter of minutes.

Figure 29. MAJIC Main Screen.

1. MAJIC Main Screen

The main screen of MAJIC is divided into four primary areas as seen above.

Each area provides the user a place to perform actions, receive feedback, or do a

combination of both. These areas are described below.

89

a. Button Panel

The button panel allows the user to perform several of the commands

necessary for the general management of the robot team and the main screen’s

applications. Operations such as adding and removing robots, loading actions onto

robots, saving parameter logs and session, getting help, and quitting MAJIC are

performed in this area.

b. Robot Display Area

The robot display area is an optional area. Robot Libraries that utilize this

area can enhance it with as much or as little complexity as desired. With the use of GUI

buttons and fields, this area can provide users with a means to interact with their robots

and receive feedback. If the area is not utilized, the default message “No Display

Currently Available” will be displayed.

Each display area also generates a tab containing the robot’s ID tag. This

ID is used to pass commands to the robot. The tab is used to switch to that robot’s

display area when selected. In this manner, many robot displays can be maintained

simultaneously on the main screen without cluttering the display.

c. Command Line

The command line provides an area for users to pass commands to or

request information from any of the robots currently managed by the MAJIC system.

The format of the commands follows a simple, intuitive MAJIC script.

Commands are parsed by the application and translated to the appropriate, proprietary

format of the intended robot.

Despite its minimalist approach, the script allows controlling the robot’s

odometry, heading, peripheral devices, and internal parameters.

As a convenience for the user, the up and down arrow keys on the

keyboard allow cycling through previous commands to reduce repetitive typing.

90

d. Message Area

The message area provides user feedback and status updates for all user

actions and commands. Parameters requested from the robot are displayed in this area as

well as error messages regarding button events.

This area contains a scroll bar that allows the user to scroll through a

message history of their current session. Maintaining a historical record of session

messages is helpful during trouble-shooting and trial-and-error research.

2. Adding a Robot to the Team

Adding a robot is the first action a user will perform after launching the MAJIC

application. The only other button that will function without a robot loaded into the

system is the KILL MAJIC Button, which exits the MAJIC application. Furthermore, no

commands can be passed before a robot is connected.

Figure 30. Robot Selection Screen.

91

The type of connection a robot requires depends on the type of robot and its

method of communication. Because this data can vary, two pop-up screens allow users to

dynamically specify the type and connection information for the robot to be added. The

results of selecting the ADD BOT Button are shown in Figures 30 and 31.

Figure 31. Connection Input Screen.

The drop down menu on the Type Selection screen contains all the brands of

robots that this version of the MAJIC application supports. Once selected, a robot-

specific connection screen will appear. Once the user has entered the required data and

selected the OK option, MAJIC will attempt to establish a connection with the specified

robot.

92

Figure 32. Adding an AIBO.

If a robot is successfully added, its display panel will appear in the tabbed pane of

the Robot Display Area. A tab denoting the robot’s ID will also appear to the left of the

Robot Display Area. This ID is used at the beginning of each command to identify the

command’s recipient. Finally, a connection verification will appear in the Message Area.

If MAJIC is unable to establish a connection with the specified robot, the display

area will remain unchanged and an error message will appear in the Message Area.

3. Passing Commands to the Robot

Once a robot is connected to MAJIC, the user can immediately establish

communication with and control over it from the Command Line. User commands utilize

the MAJIC Script format, a simple, intuitive script that is detailed and depicted in the

table below.

93

All commands begin with a robot ID and are delineated by a single space. Robot-

specific libraries are provided the freedom to implement the commands in a manner most

appropriate for their robot type. Due to this flexibility, command arguments may vary

slightly among various brands. Students and researches who use MAJIC are assumed to

have a basic knowledge of their robot and its parameter requirements.

Commands can be sent to any robot currently active regardless of which robot tab

is selected on the Robot Display Area.

Command Arguments Description

move amount Command directs the robot’s odometry to conduct either
forward or backward motion. The amount argument
specifies a distance, duration, or other robot-specific
parameter. Command returns a status message or error
report.

turn amount Command directs the robot’s odometry to change its
heading based on indicated amount. The amount
argument specifies a direction, offset, duration, or other
parameter. Command returns a status message or error
report.

get parameter Command queries the robot for the value of the specified
parameter. The argument can be any valid parameter
name recognized by the robot. The message returned
contains either the requested value or an error report.

set parameter

value

Command sets the parameter indicated to the specified
value. The parameter can be any valid parameter name
recognized by the robot. The value may be checked for
validity depending on the robot-specific library
implementation. Command returns a status message or
error report.

Table 3. MAJIC Script Commands.

94

a. Robot ID

All commands start with the following tag:

bot#

- an integer value based on the order in which the robot was added to the

MAJIC team. The ID is assigned the lowest available integer greater than zero. The

number is used as an ID to specify which robot is to receive the present command. Robot

ID’s are displayed on each robot’s tab in the Robot Display Area.

b. The MOVE Command

The format for the move command:

bot# move a

a – an amount that represents the desired movement of the robot. Robot

odometry can consist of wheels, legs, wegs, or various other forms of motion. To

accommodate all robot types, the move command argument will vary slightly in

implementation.

c. The TURN Command

The format for the turn command:

bot# turn a

a – this amount can represent a relative heading, absolute heading, degree

angle, radian angle, duration, or other value depending on robot implementation.

d. The GET Command

The format for the get command:

bot# get p

p – this argument represents the name of the robot’s parameter to be

polled. Any parameter that is recognized by the robot can be queried by this command

including images, infrared readings, sonar readings, etc.

95

e. The SET Command

The format for the turn command:

bot# set p v

p – this argument represents the name of the robot’s parameter to be

adjusted. Any parameter that is recognized by the robot can be queried by this command.

v – this argument represents the value with which the specified command

is to be adjusted. Depending on the library implementation, this value may or may not be

verified prior to being passed to the robot.

Figure 33. MAJIC Command Line Example.

96

f. Command Line Example

The figure above depicts the MAJIC message area and command line after

several iterations of commands were passed to the AIBO robot, Bot 0.

1. This message indicates that AIBO was connected.

2. This message reflects a move command.

3. These messages reflect a get command and the status report message

returned by the command.

4. These messages reflect a set command and the status message returned.

5. These messages reflect an invalid robot identification and the associated

error message.

6. These messages reflect a get command with an invalid parameter and the

associated error message.

7. These messages reflect a set command with bad syntax and the associated

error message.

8. These messages reflect a set command with a value outside the allowable

range for the specified parameter and the associated error message.

As seen above, a valid command is displayed in the Message Area, added

to the command list, and removed from the command line. If the command is invalid, it

will remain on the command line until corrected or overwritten.

4. Invoking the Help Screen

As can be seen above, many parameters can be set and retrieved from the

command line. Each robot library has the option to include a help screen to clarify and

specify the various parameters that can be manipulated for a given robot type. After the

user presses the Help button and selects a robot’s help screen to view, the screen will

appear as an inset to the Message Area.

97

Figure 34. Aibo Help Screen.

As seen above, the Aibo Help Screen specifies the command syntax, parameters,

and ranges specific to the Aibo robot. This screen will remain visible until closed, and

can be relocated on the desktop to provide a useful reference when passing commands to

the robot.

5. Saving a MAJIC Session

Another useful feature to capture command line data for the user is the Save

Session button. Activating this button allows the user to specify a file in which to record

all the commands that were sent to the robot in a given session. This file is stored as a

text file in the LogFiles/sessions folder found in the MAJIC root directory. The file can

be used to create behaviors called MajicActs that can be loaded on the robot at run time

(see Loading Actions on the robot).

98

6. Saving a Parameter Log

Besides commands, the user will often desire a data log of various robot

parameters during a particular event. After activating the Save Log button, selecting an

active robot, and entering a file name, a text file will be stored in the LogFiles/parameters

folder of the root directory. These parameter log files a very useful for researching,

analyzing, and trouble shooting a particular event or behavior.

7. Loading Actions on the Robot

Besides testing single commands on the command line, MAJIC also offers

researchers the capability to test pre-programmed actions on their robots and robot teams.

These actions are Java classes containing a set of MAJIC Scripts that have been saved as

data objects. The MajicActs folder of MAJIC’s root directory contains a sample set of

Java .dat files. These files can be loaded onto the robot by the user at run-time. The

steps to perform that operation are detailed below.

99

Figure 35. Robot Selection for Load Action.

After selecting the Majic Act button, the user is asked which robot is to receive

the action behavior. The dropdown list is populated with all currently active robot IDs.

The tab that is selected on the Robot Display Area has no bearing on which robot can be

selected from the pop-up menu.

100

Figure 36. Load Action Selection Screen.

After selecting a robot, the Load Action screen prompts the user to select a pre-

programmed MAJIC Action to load onto the robot. Once the file is selected and the Load

Action button is pressed, the MajicAct behavior will begin to execute its scripted

commands on the robot.

Some Majic Acts are generic and can run on any robot. Others are written for a

particular robot type. In the case of the latter, the selected file must match the robot type

or the action will be canceled and an error message will post in the Message Area.

8. Removing a Robot from the Team

Reorganizing a team is a useful tool once a robot has completed its obligations.

The Kill Bot button is available for users who wish to retire a robot from service.

Removing a robot from MAJIC is detailed below.

101

Figure 37. Removing a Robot.

Once the Kill Bot button has been selected, the Bot Selection screen will prompt

the user to select a robot to remove. The drop-down list will be automatically populated

with all currently active MajicBots. Any robot on the list can be selected for removal

regardless of the Bot currently selected in the Robot Display Area.

102

Figure 38. Bot 1 is Dead.

After selecting a robot, the associated tab and display panel will be removed from

the Robot Display Area and a status report will appear in the Message Area. The robot

ID numbers will not re-adjust to a consecutive ordering, but the next robot added to

MAJIC will consume the lowest available ID number.

9. Quitting the MAJIC Application

The final section of the users guide discusses the Kill Majic button. When the

user is ready to quit the application, selecting the Kill Majic button will close all

connections to any active robots and then terminate the MAJIC application.

103

G. PROGRAMMER’S GUIDE

All students, researchers, and hobbyists with a desire to conduct experiments in

artificial intelligence and robotics are eventually faced with the task of programming their

robot. Learning all the proprietary specifications and syntax of an unfamiliar robot

requires valuable time and effort that could be better utilized conducting the research

itself. Repeating this process for a team of heterogeneous robots can quickly become an

extremely involved and overwhelming process. Furthermore, even after command and

control of individual robots is established, the programmer is still faced with the arduous

task of coordinating them to interact and function as a team.

Programmer’s can use the Java libraries within the MAJIC package to address the

above concerns. MAJIC’s flexible and modular design provides programmers with a

variety of software development options. Each extension of the MajicBot class can be

used as a stand-alone class for robot-specific programming. Alternatively, the classes can

be used piece-meal to develop software for a team of specific robots or a specific team

goal. Finally, programmers can create and test their own unique robot behaviors by

creating extensions of the MajicAct class and saving them as .dat files in the MajicAct

folder of MAJIC’s root directory.

Templates for MajicBot and MajicAct extensions can be located in the Utilities

folder of the root directory. Also in this folder is the MajicActMaker program that

converts MajicAct extensions to .dat files.

1. Stand-alone Programming

MAJIC provides an extra layer of abstraction for Java programmers. In essence,

it bridges the gap between a Java program and a robot’s operating system. Since all

MajicBot extensions override common methods, many of the time-consuming tasks

facing a robot programmer can be abstracted to a higher-level.

Utilizing this higher level of abstraction, novice programmers can gain immediate

access to their robot’s parameters and devices. Connecting to the robot, often an

involved evolution, is reduced to a simple matter of invoking the connect() method. The

104

get() and set() methods can be used in conjunction with custom-made logic methods to

produce sophisticated decision-making processes and robot-specific operations.

Below is an example of a stand-alone program using the AIBO ERS-7 and the

MajicAibo Class. This simple example combines the majic package with programming

logic to create a wander behavior for the AIBO.

The WanderDog Class, along with the others referenced by this guide, can be

located in the Examples folder of the root directory.

105

Figure 39. The WanderDog Program.

106

While it is not completely necessary to understand every line of code in the

WanderDog program, it is important to understand what is required to write future stand-

alone software.

Circle 1 denotes Java’s import statement. The majic package must be imported

into the program before utilizing MAJIC classes.

Circle 2 shows how an instance of MajicAibo can be instantiated by typecasting

the object returned from the static method getBot() of MajicBot. An alternate method of

instantiating an object for AIBO specific programming would be the following:

MajicAibo aiboBot = new MajicAibo();

With this method, the MajicBot typecasting can be avoided. In fact, with this method

only the majic.MajicAibo class would need to be imported at Circle 1.

 Circle 3 invokes the connect() method of the MajicAibo Class passing it an IP

address. This makes connecting to the robot a very simple process.

 Circle 8 gets a reading from the robot and Circle 4 uses it determine a course of

action. Circles 4 and 8 begin to show how convenient yet powerful MAJIC programming

can be when combined with standard conditional logic statements.

 Circles 5, 6, and 7 demonstrate other uses of familiar MajicAibo methods to

control the robot and assist in the decision-making process.

 WanderDog is a toy example that was not designed to be particularly robust or

fascinating. Even so, despite its apparent simplicity, it will actually cause an AIBO robot

to wander around the room and make an attempt at basic obstacle avoidance. This in

itself shows the potential for developing powerful robot-specific programs using a single,

stand-alone class from the MAJIC libraries using very few lines of code.

2. Creating Robot Libraries

As demonstrated in the WanderDog example, using a robot library can provide

novice programmers a simple and powerful interface to their robots. Undoubtedly,

additional libraries will be necessary in order for MAJIC to maintain its relevance and

utility to future programmers.

107

Generating a library is no simple task. First and fore most, a library programmer

must discover or develop a means of communicating with and controlling the robot from

a Java environment. In most cases, this process will involve the establishment of a

client/server relationship in which a Java extension of MajicBot will act as a client to the

robot’s operating system. This client class usually exchanges proprietary data with the

robot server over a wireless or virtual serial port connection.

Once this communication and control capability is established, incorporating the

library client into the MAJIC architecture is merely a matter of some simple

housekeeping updates in the abstract MajicBot Class.

The Generic Template for the MajicBot Class is pictured below and can also be

located in the Utilities folder of the root directory.

108

Figure 40. The Generic MajicBot Template.

109

The requirements to implement the template are documented by the Java

comments and briefly described in the following paragraphs. One area of note is the

optional display() and showHelp() methods that are commented out.

The display() method can be overridden if there is a necessity or desire to

incorporate a Graphical User Interface for the libraries specific robot. A default message

stating that there is currently no available display for this type of robot is provided in the

abstract MajicBot Class. This display panel can provide significant user interaction and

feedback is implemented by the library programmer. When combined with the update()

method of MajicBot, the display can even be dynamically updated every second with

current robot parameter information.

The showHelp() method can also provides the programmer with an option to

provide the user with useful information about the specific robot that is referenced by the

MajicBot extended library. Again, the MajicBot Class provides a default help file, but

odometry units are generalized, and robot-specific parameters are not addressed.

If neither of these optional methods are overridden, the javax.swing import can be

disregarded and the default display message and help file will appear in the Robot

Display Area of the MAJIC application.

Once the MajicBot extension is completed, it must still be incorporated into the

MajicBot Class. Several simple steps are required to add the library to the static

attributes and methods of MajicBot. Those steps are labeled in the MajicBot excerpt in

the figure below.

110

Figure 41. The Abstract MajicBot Class

Static constants are included in the MajicClass to improve code readability and

clarity.

To avoid vague integers in the getBot() method and switch statement, the name of

the new robot should be added to the list of constants (Circle 1).

The name should also be added to the TYPE array (Circle 2). This array is used

to populate the drop-down menus of the MAJIC application.

Finally, a case statement must be added in order for MajicBot to create an

instance of the new robot library when requested.

Once these three steps are completed and the MajicBot Class is recompiled, the

MAJIC application will be able to fully employ the new robot library.

111

3. Performing a Majic Act

Although the command line of the MAJIC application allows robot researches to

test their robot’s reaction to single commands in a real time environment, a researcher

may at times find this too limited. In some instances, the student will have an entire

behavior or set of actions that need to be tested on the robot. While it would be possible

to code in all of these scripted actions from the command line, that process would

undoubtedly prove tedious with repeated trials. Furthermore, capturing immediate

responses to environmental stimuli would not be possible from the command-line

approach when dealing with complex robot behaviors.

a. The MajicAct Class

To offer a convenient, research-friendly approach to behavioral testing,

MAJIC provides programmers another abstract class, the MajicAct Class.

112

Figure 42. The MajicAct Class

The MajicAct Class utilizes the Prototype Design of the Creator Design

Pattern. As such, this abstract class is designed as a template that must be extended by

classes that provide behavior-specific implementations of the class. These

implementations can either be specific to a particular robot type or generically applicable

to all MAJIC robots.

b. The AiboSquare Class Extension

A robot-specific example, the AiboSquare Class, is provided and

explained in detail below.

113

Figure 43. MajicAct AiboSquare Example

Circle 1 marks the class descriptor that is required by all extensions of the

MajicAct Class. To allow the concurrent execution of behaviors for multiple MAJIC

robots, Majic Acts are implemented as extensions of Java’s Thread Class.

Majic Acts must also implement Java’s Serializable interface in order to

be stored in the MajicActs directory as .dat object files. This process is required in order

to allow the user to select and load MajicAct objects from this directory at run-time. A

MajicActMaker Class is provided in the MajicActs folder of the root directory and its use

is explained later in this section.

114

Circle 2 marks the AiboSquare attribute, aiboBot. This allows for the

robot-specific instantiation of a MajicAibo attribute. If this behavior was intended for

generic use, this attribute could be omitted.

At Circle 3, the setBot() method of the MajicAct super class is overridded

to provide it with additional functionality. The original method is called at Circle 4 to

establish the robot that this behavior is intended to control.

Because this class is intended for a specific robot, the mBot attribute is

checked for the proper type at Circle 5. If the robot argument is a valid Aibo instance,

the aiboBot attribute will be type cast to the robot argument (Circle 6).

The run() method at Circle 7 is necessary for all MajicAct extensions

regardless of what robot type the extension is designed for because they are extensions of

the Thread Class. The run() method is the heart of the MajicAct Class. This method

contains the scripted commands that comprise the intended behavior. In cases where a

behavior requires continuous looping, the MajicAct continueLoop attribute can be

utilized to monitor and kill the thread.

c. Creating a Majic Act with a Session File

When creating a behavior for a robot, the user may find it useful to

conduct several experiments from the command line prior to populating the run() method

of a MajicAct. Once the right combinations of MAJIC Script commands have been tried

and tested, the user can utilize the file created during save session as a programming

reference.

115

Figure 44. Aibo Session Sample.

The aibo session sample shown above is an example of a session file that

could be used to create an aibo behavior for a MajicAct.

d. Serializing a MajicAct Object

The simple program above can be found in the MajicActs directory of the

MAJIC package. The user can search this directory at run-time to choose .dat object files

to be loaded into MAJIC and run on selected robots.

116

Figure 45. Majic Act Maker.

Once the programmer has developed a MajicAct extended class, that class

must also be stored in the MajicActs directory.

Two adjustments must be made to the MajicActMaker Class prior to

converting a behavior class to a .dat file. Circle 1 marks the name of the .dat file that will

appear on the file selection screen of MAJIC. Circle 2 marks the name of the MajicAct

extended class. The above example depicts the creation of the AiboSquare behavior from

the previous section. Once these names are specified, the MajicActMaker class can be

compiled and run. Executing this class will generate the .dat object and store it in the

MajicActs folder.

117

V. RESULTS

A. OVERVIEW

As previously stated, the primary goal of MAJIC is to provide students and

researchers affiliated with the NPS Coordination Laboratory an intuitive, convenient

platform on which to test theories and conduct experiments. MAJIC protects students

from the rigors of such arduous tasks as developing complicated connection and

communication infrastructures, learning complicated proprietary APIs and programming

protocols, and designing intricate software architectures and programs for multi-agent

control.

The beginning of this section examines the economy of code that can be achieved

when programming in MAJIC. This section demonstrates how the implementation and

application of the practices used by MAJIC and MAJIC programmers allow students with

minimal programming experience to develop and test intricate robotic behaviors with

relatively few lines of MAJIC Scripted code.

The initial examples demonstrate MAJIC’s code efficiency when utilized on a

single robot. The following section demonstrates even greater benefits when creating

software programs that coordinate and combine dissimilar agents. The remainder of this

section provides examples of output files generated during test-runs of several MAJIC

sessions with various configurations of robotic teams and individuals.

B. INDIVIDUAL ROBOT PROGRAMMING

Even when conducting simple operations on a single robot, MAJIC proves to be

easier to understand and more economical to implement than writing a proprietary

program.

To illustrate the benefits of MAJIC Programming, an Aibo and Pioneer example

are provided below.

118

1. MAJIC vs Proprietary Programming with Aibo

Figure 46. Aibo’s Layers of Abstraction.

In some cases, there is a trade-off for the added level of abstraction provided by

Majic Programming. Certainly, a program written in the native machine language of

AIBO provides greater access and control than one written in Open-R. Furthermore, an

119

Open-R program generally provides greater power than an URBI program that runs on

top of Open-R. Finally, a MAJIC program running on top of URBI can on occasion,

experience limitations.

Yet, in general, MAJIC presents the researcher with more than enough capability

to conduct proof-of-concept programming; and it does so while offering a scripted

language that provides ease of understanding and economy of code.

120

Figure 47. WanderDog with Line Numbers.

121

To illustrate the economy of MAJIC programming, the WanderDog code is once

again revisited. This program is written with a combination of Java and MAJIC Script.

Used in conjunction, these languages can create a functional wandering and avoidance

behavior for Aibo with a minimal amount of code. With the removal of the white space,

the above program contains 34 lines of code.

Along with code economy, MAJIC Script also produces self-documenting code

that provides easy readability. The common commands seen in WanderDog such as

move, turn, get, and set are instantly recognizable and understandable.

This structure of common commands allows programmers of all levels to read a

MAJIC program written for any supported robot and immediately get an understanding of

how the program is intended to behave.

To further demonstrate these issues, the same wandering behavior written in a

combination of URBI and Java is provided below.

122

Figure 48. URBI WanderDog.

123

Figure 49. URBI WanderDog (cont.).

124

The URBI implementation of WanderDog illustrates how much the code

increases by just moving down one layer of abstraction in Aibo’s software architecture.

Discounting the white space in URBIWanderDog still leaves 65 lines of programming

code. This increases the amount of code required to construct the basic wander behavior

on Aibo by nearly a factor of two.

With the increase in code also comes a decrease in program readability. The

send(“dist: distance.val;”) command does not lend the reader a clear idea of what the

command’s intentions involve. Other URBI specific commands such as setCallback(this,

“dist”), event.getTag(), and event.getCmd() complicate and confuse the code readability.

At the very least, these commands require the programmer to generally familiarize

themselves with the URBI programming language enough to gain a working knowledge

of its syntax and structure. Learning proprietary languages for each robot can lead to

frustration and roadblocks for students who wish to simply test a simple behavior or AI

algorithm.

2. MAJIC vs Proprietary Programming with Pioneer

To further illustrate the obstacles encountered by programmers faced with writing

proprietary programs, consider the architecture of the Pioneer. Not all COTS products

come with embedded servers conveniently preprogrammed like the Aibo. On platforms

like the Pioneer, the programmer must develop and install programs directly on the robot

in order to communicate with the agent’s operating system or develop their own client

and server to communicate with the pioneer as is done in MAJIC (see Figure 50).

125

Figure 50. Pioneer Architecture.

Although Pioneer does come with its own programming API in the form of ARIA

and ArNetworking, these interfaces are extremely specific and robust, and therefore

require students to spend valuable time familiarizing themselves with this style of

proprietary programming.

This section will demonstrate the difference between the development of a

program designed to run directly on the Pioneer versus one written with MAJIC.

126

Figure 51. Pioneer Program using ARIA.

127

Figure 52. Pioneer Program using ARIA (cont.).

128

Figure 53. Pioneer Program using MAJIC.

Once again, the clear advantage of MAJIC programming is apparent. To develop

and implement a native ARIA program on the Pioneer requires 60 lines of non-white

space code (Figures 50 and 51). This program compared to the 18 line MAJIC program

(Figure 52) demonstrates that MAJIC provides a 30% reduction in the amount of lines

that a student would have to code in order to test a simple wander behavior on the

Pioneer.

Furthermore, the readability is dramatically improved by the concise, intuitive

structure of the MAJIC Script program. The MAJIC program makes it obvious that the

wander behavior simply moves the pioneer forward to take a reading, turns it 180 degrees

for a reading, and moves it back to its original position for a final reading. Yet, that

simplified behavior is not so apparent from the 81 lines of code in the ARIA program.

129

C. PROGRAMMING HETEROGENEOUS ROBOT TEAMS

The benefits of MAJIC Script reach their full potential when utilized to create

behaviors for teams of multiple, heterogeneous robots.

MAJIC Programming allows programmers to quickly develop a class that

centralizes the control of various robotic agents. From this central class programmers can

implement logic and behaviors based on the shared resources of the heterogeneous robot

team.

Connections created via wireless configurations, virtual serial ports, and

client/server architectures are encapsulated within the MAJIC libraries. Passing

commands to the robots and receiving information from them is abstracted to a script that

is intuitive and easy to understand.

The Great Race code below is a simple program that instructs a Hemisson,

Pioneer, and Aibo to move forward five seconds as a toy example of a race. Although

this simplistic example does not display the power of information sharing among the

robots, it does demonstrate the sizeable code reduction and increased readability that can

be gained using MAJIC Script even in the simplest of heterogeneous robot programs.

130

Figure 54. GreatRace Example.

131

Figure 55. GreatRace Example (cont.).

The 71 lines of code for the class above establish the communications necessary

to command all three robots to move forward for the five-second race.

The Pioneer, however, requires a custom server running onboard to receive the

incoming packets and translate them to ARIA instructions. A sample server is provided

below.

132

Figure 56. GreatRacePioneerServer Example.

133

Figure 57. GreatRacePioneerServer (cont.).

134

While similar to the server developed for the MAJIC application, the 86-line

server above is simplified specifically for the Great Race example. In this example, the

server above will only process a “MOVE” command from the Great Race client.

As seen from the two programs above, to produce an architecture that performs a

task as simple as moving three dissimilar robots forward can require 157 lines of code or

more. Undoubtedly, a programmer who wishes to construct a program capable of non-

trivial experiments with dissimilar robot teams would spend a great deal of time and

energy developing a robust architecture of command and control.

Below is the Great Race program rewritten using the MAJIC package.

Figure 58. MajicRace Example.

The MajicRace Class recreates the same 157 line Great Race experiment utilizing

only 16 lines of Majic Script. Not only does the MAJIC Script provide a 90 percent

reduction in code; it also dramatically improves the program clarity and readability.

135

VI. CONCLUSIONS AND RECOMMENDATIONS

A. RESEARCH CONCLUSIONS

The overarching goal of this thesis was the development of a software API

offering students and researchers the capability of heterogeneous, multi-agent command

and control by providing a layer of abstraction that is easily learnable and understandable

for users with all levels of computer skills.

Utilizing sound engineering practices, those user requirements were specified and

incorporated into the overall design of the MAJIC application. Through extensive use of

the Unified Modeling Language, software engineering patterns, and object-oriented

features such as inheritance and polymorphism, the MAJIC application achieved a

modularity that allows for the addition of future updates with relative ease and minimal

recompilation.

Furthermore, the MAJIC application allows programmers to create their own

behaviors in the form of MAJIC ACTS and develop their own programs with the pseudo-

scripted language, MAJIC Script. The simple, yet powerful set of commands

encompassed in the MAJIC Script allow programmers to create programs for individual

robots or multi-agent teams with a significant reduction in code compared to proprietary

programs.

Finally, in the case of the robots studied for this thesis, MAJIC is fully capable of

interfacing with virtual robotic packages such as WebBots, and the proprietary package

that comes with the Pioneer. This adds even greater benefit to the researcher or student

who wishes to test and troubleshoot outside the lab.

B. RECOMMENDATIONS FOR FUTURE WORK

Overall, this research successfully accomplished its objectives as defined in

Chapter I. However, several areas could benefit from exploration, augmentation, and

improvement.

136

An obvious area with any new software application is that process of extensive

testing and debugging. Were MAJIC to receive greater exposure to students and

researchers, its stability and functionality would undoubtedly benefit from their upgrades,

patches, and feedback.

Along those lines, the implementation of additional libraries would obviously

broaden MAJIC’s capabilities and relevance to the robotic communities. Although the

addition of these libraries requires minimal code alteration and recompilation, these

requirements could be removed altogether with such techniques as dynamic class loading,

or similar tactics.

Finally, MAJIC’s modular architecture could be expanded to include modules that

provide a finer grain to robot specification and interaction. For example, allowing the

user to specify what types of sensors a robot will be equipped with or what type of

motion model a robot’s move command will utilize could allow the user to develop more

intricate behaviors with greater detail.

137

LIST OF REFERENCES

[1] MobileRobots INC., Software, Documentation & Technical Support for
MobileRobots Research Platforms, 2006. Available at
http://robots.mobilerobots.com. Accessed May 2007.

[2] K-Team Corporation, Hemisson Support Page, 2006. Available at http://www.k-
team.com. Accessed May 2007.

[3] D.S. Blank, D. Kumar, L. Meeden, and H. Yanco, Pyro: A Python-based
Versatile Programming Environment for Teaching Robotics. Journal of
Educational Resources in Computing (JERIC).pp. 1-8, 2004.

[4] D. Powell, G. Gilbreath, M. Bruch, Multi-robot Operator Control Unit, Space and
Naval Warfare Systems Center, San Diego. Available at
http://www.spawar.navy.mil/robots/resources/mocu/mocu.html. Accessed June
2007.

[5] J. Baillie, The URBI Tutorial, Gostai, May 2006, pp. 12-21.

[6] J. Baillie, URBI Language Specification, Gostai, May 2006, pp. 21-25.

[7] J. Baillie, URBI Doc for Aibo ERS2xx ERS7 Devices Documentation, Gostai, May
2006, pp. 3-6.

[8] R. Murphy, Introduction to AI Robotics, Cambridge, The MIT Press, 2000, pp.
284-310.

[9] B. Bruegge, A. Dutoit, Object-Oriented Software Engineering Using UML,
Patterns, and Java, Second Edition, Boston, Pearson Prentice Hall, 2004, pp. 31-
37.

[10] D. Leffingwell, D. Widrig, Managing Software Requirements A Use Case
Approach, Second Edition, Upper Saddle River, Pearson Education INC., 2003,
pp. 148-163.

[11] C. Wu, An Introduction to Object-Oriented Programming with Java, Fourth
Edition, New York, McGraw Hill, 2006, pp. 12.

[12] K. Sierra, B. Bates, Head First Java, Second Edition, Sebastopol, O’Reilly Media
INC., 2005, pp. 18.

[13] V. Raman, Robosim – Pioneer Robot Interface, University of Madras, India,
2003, pp. 5.

[14] A. Bredenfeld, Behavior Engineering for Robot Teams, Fraunhofer Institute for
Autonomous Intelligent Systems, 2003, pp. 8-12.

138

[15] Carnegie Mellon University, Tekkotsu, Available at
http://www.cs.cmu.edu/~tekkotsu/index.html. Accessed May 2007.

[16] CARMEN, Carnegie Mellon University, Available at
http://carmen.sourceforge.net/home.html. Accessed September 2007.

[17] T. Balch, TeamBots 2004, Available at http://www.cs.cmu.edu/~trb/TeamBots.
Accessed September 2007.

[18] The Orocos Project, Smarter Control in Robotics & Automation, 2007. Available
at http://www.orocos.org. Accessed August 2007.

[19] Aibo, Sony, Available at http:/support.sony-europe.com. Accessed September
2007.

[20] B. Smuda, Software Wrappers for Rapid Prototyping JAUS-Based Systems,
TACOM Research Development and Engineering Center, 2005, pp. 2-5.

[21] J. Pedersen, A Practical View and Future Look at JAUS, resquared INC, 2006,
pp. 3.

139

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

